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In this supplementary material, we discuss the limita-
tions of our method, provide more details about the experi-
ments and also show several qualitative results and compar-
isons. We also refer the reader to the Supplementary Video
for visualization of results on different action sequences.

1. Hand Pose Representations and Losses

We detail the three possible representations mentioned in
Section 3.4 of the paper. We assume 21 3D-joint locations
per hand as in the MANO [10] model. The losses for each
of the 3 representations are summarized in Table 1.

3D representation. In this representation, each joint j
is associated with a parent-relative joint vector V (j) =
J3D(j)− J3D(p(j)), where J3D is the 3D joint location and
p(j) refers to the parent joint index of joint j. We estimate
20 joint vectors per hand using 20 joint queries, one for each
skeletal bone (40 queries for two hands), from which we can
compute the root-relative 3D location, Jr

3D of each joint by
simple accumulation. The advantage of this representation
is that it defines the hand pose relative to its root without
requiring knowledge of the camera intrinsics.

2.5D representation [5, 9]. In this representation, each
joint is parameterised by its 2D location J2D, and the dif-
ference ∆Zp between its depth and the depth of its par-
ent joint. The camera intrinsics matrix K and the abso-
lute depth Zroot of the root joint (the wrist) [9] or the scale
of the hand [5] are then required to reconstruct the 3D
pose of the hand in camera coordinate system as J3D =

K−1 · (Zroot +∆Zr) ·
[
J2Dx , J2Dy , 1

]T
, where ∆Zr is the

root-relative depth of the joint computed from its predicted
∆Zp and the predicted ∆Zp for its parents. J2Dx

, J2Dy
are

the predicted x and y coordinates of J2D.
When using this representation, we also predict the root

depth Zroot separately using RootNet [8] as in [9]. Each
joint query estimates the J2D and ∆Zr for that joint and we

Representation Lhand−pose

3D
∑

j ||V (j)− V (j)∗||1+
∑

j ||Jr
3D(j)− Jr∗

3D(j)||1
2.5D

∑
j ||J2D(j)− J∗

2D(j)||1+
∑

j |∆Zr(j)−∆Zr∗(j)|
θ

∑
j ||Jr

3D(j)− Jr∗

3D(j)||1+
∑

j ||θ(j)− θ∗(j)||1

Table 1. Hand pose losses for different pose representations. x∗

denotes the ground-truth values for variable x and x(j) the value
of x at joint j.

require a total of 21 joint queries (42 for two hands), one for
each joint location to estimate the 2.5D pose per hand.

MANO joint angles, θ [10]. In this representation, each
3D hand pose is represented by 16 3D joint angles in the
hand kinematic tree and is estimated using 16 joint queries
per hand, one for each joint. The MANO hand shape param-
eter is estimated along with the relative translation between
the hands using an additional query. Given the predicted 3D
joint angles θ for each hand and the shape parameters β, it
is possible to compute the root-relative 3D joint locations,
Jr
3D of each hand.

2. Method Limitations
Though our method results in accurate poses during in-

teractions, the results are sometimes not plausible as we do
not model contacts and interpenetration [1, 3, 6] between
hands and objects. Further, during highly complex and
severely occluded hand interactions as we show in the last
row of Fig. 9, our method fails to obtain reasonable hand
poses. We believe these problems can be tackled in the
future by incorporating temporal information and physical
modeling into our architecture.

3. Hand-Object Pose Estimation Pipeline
In Fig. 1, we show the complete pipeline of our

Keypoint-Transformer architecture for estimating poses of
two hands and object during interaction.
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Figure 1. Pipeline for hands and object pose estimation. The object keypoints are selected by randomly sampling 2D locations on the
object segmentation map regressed by the U-Net (Section 3.5 of main paper). The hand keypoints are selected from the single-channel
keypoints heatmap, also regressed by the U-Net (Section 3.1 of main paper). Each of the detected keypoints are encoded using CNN image
features and spatial embedding. The keypoints are associated with one of the 42 hand joints (21 joints per hand), the object class or the
background class in the keypoint-joint association stage (Section 3.2 of main paper). The object rotation and translation w.r.t the right
hand is estimated in the pose estimation stage using 2 different learned object queries, while the pose of each hand-joint is estimated using
per-joint learned queries (Section 3.3 of main paper).

4. Implementation details
The encoder of our U-Net [11] is based on ResNet-50 [4]

architecture while a series of upsampling and convolutional
layers with skip connections forms the U-Net decoder. We
use 256×256 pixels as input image resolution, 128×128
pixels as heatmap resolution, and set the 2D Gaussian ker-
nel variance, σ to 1.25 during training. The 256×256 pixel
input image patch is loosely cropped around the hand and
object. We use Adam [7] optimizer with a learning rate of
10-4 and 10-5 for the attention modules and CNN backbone,
respectively. The network is trained for 50 epochs on 3 Ti-
tan V GPUs with a total batch size of 78 and uses on-line
augmentation techniques such as rotation, scale and mirror-
ing during training.

5. Baseline Architectures
We detail here the two baselines, ‘CNN+SA’ and

‘CNN+SA+CA’ considered in Section 4.1 of the main pa-
per. Figures 2 and 3 show their architectures. We used
256 × 256 cropped images as input to the CNN resulting
in a feature map of spatial dimensions 8×8 and 2048 chan-
nels. The features are flattened along the spatial dimensions
and the 64 features are converted to 224 dimensions using 3
MLP layers. These features are then concatenated with 32-
D positional embeddings resulting in 256-D features and are
provided to the Transformer encoder. The networks were
trained to output the 2.5D pose representation for 50 epochs
on 3 Titan V GPUs with a batch size of 78. The joint queries
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Figure 2. The ‘CNN+SA’ baseline architecture.
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Figure 3. The ‘CNN+SA+CA’ baseline architecture.

in ‘CNN+SA+CA’ are learned in a similar way as for our
Keypoint Transformer.

6. Robustness to Noisy Keypoints

We show more examples to demonstrate the robustness
of our method to noisy keypoints. We consider two sce-
narios, adding noisy keypoints to the set of detected key-
points, and randomly removing some keypoints from the
set of detected keypoints. We show results in Figures 4 and
5, respectively. The number of detected keypoints for these
cases were 48 and we added 30 additional noisy keypoints
for the former scenario and retained only 30 keypoints for
the latter scenario.
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Figure 4. Effect of adding additional noisy keypoints. Our method
predicts accurate poses even with noisy keypoints.
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Figure 5. Effect of using a subset of detected keypoints for pose
estimation. We consider only 30 of the 48 detected keypoints for
pose estimation and still estimate an accurate pose.

7. H2O-3D Dataset

Our dataset contains sequences of two hands interact-
ing with an object, captured on a multi-view setup with 5
RGBD cameras. We collected data from six different sub-
jects and considered ten objects from the YCB dataset with
each subject manipulating the object with a functional in-
tent. The dataset is automatically annotated with 3D poses
of hands and objects using the optimization method of [2].
The dataset contains 60’998 training images and 15’342 test
images from 17 different multi-view sequences in total. As
explained in the main paper, we only consider 9’098 images
from the set of 15’342 test images for object pose evaluation
as the objects in the remaining images are barely visible due
to occlusion by the hands. We show some sample annota-
tions from the dataset in Fig. 6. Table 2 shows the list of
YCB objects and their axis and angle of symmetry consid-

ered during our training and evaluation.

7.1. Per-Object MSSD Values with Keypoint Trans-
former

Table 3 shows the accuracy of the object poses estimated
by our Keypoint Transformer on the H2O-3D dataset using
the MSSD metric as described in Section 4.3 of the main
paper.

8. Qualitative Results and Comparisons
We provide here more qualitative results on HO-3D,

H2O-3D and InterHand2.6M.

8.1. HO-3D and H2O-3D Qualitative Results

Fig. 7 shows qualitative results on H2O-3D and HO-3D.
Note that as we do not model contacts and interpenetration
between hands and object, our method sometimes results in
implausible poses as we show in the last example of Fig. 7.

8.2. InterHand2.6M Qualitative Results

Fig. 8 compares the estimated poses using the InterNet
method from [9] and our proposed approach. As noted in
Section 1 and Table 3 of the main paper, purely CNN-based

Object Axis Angle
Mustard Bottle Z 180o

Bleach Cleanser Z 180o

Cracker Box Z 180o

Sugar Box Z 180o

Potted Meat Can Z 180o

Bowl Z ∞
Mug Z ∞

Pitcher Base Z ∞
Banana - -

Power Drill - -

Table 2. H2O-3D objects and their axis and angle of symme-
try considered during training and evaluation with our Keypoint
Transformer.

Object MSSD (cm)
Bleach Cleanser 7.7

Mug 6.5
Banana 9.8

Pitcher Base 7.9
Bowl 7.8

Scissors 13.5
Power Drill 8.5

All 7.9

Table 3. Object pose estimation accuracy of our Keypoint Trans-
former on the H2O-3D dataset.



approaches do not explicitly model the relationship between
image features of joints and tend to confuse joints during
complex interactions. Our method performs well during
complex interactions and strong occlusions (see last row of
Fig. 8).

We show more qualitative results using the MANO angle
representation in Fig. 9. Our retrieved poses are very similar
to ground-truth poses. As we show in the last row of Fig. 9,
our method fails during scenarios where the hand is severely
occluded during complex interaction.

9. Attention Visualization
In Fig. 10, we show more visualization of the cross-

attention weights for three different joint queries. More
specifically, the cross-attention weights represent the multi-
plicative factor on each of the keypoint features for a given
joint query. We observe that the cross-attention learns to se-
lect keypoint(s) from respective joint location for each joint
query when the joint is visible. For occluded joints, features
from nearby visible joints are selected.
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Figure 6. Samples from H2O-3D dataset. Our dataset contains sequences with complex actions performed by both hands on YCB [12]
objects.

Figure 7. Qualitative results on H2O-3D and HO-3D [2]. Our method obtains state-of-the-art results on HO-3D while predicting reasonable
results on H2O-3D. The last example is a failure case where the predicted relative translations are inaccurate.
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Figure 8. Qualitative comparison between InterNet [9] and our proposed method. Our method outputs more accurate poses even during
strong occlusions. Red circles indicate regions where InterNet results are inaccurate.
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Figure 9. Qualitative results of our method on InterHand2.6M [9] compared to ground-truth poses. Our method predicts accurate poses
in most scenarios. The last row shows a failure case where our method cannot recover the accurate pose due to complex pose and severe
occlusion.
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Figure 10. Attention visualization for 3 joint queries. Each joint query attends to the image feature from the respective joint location.
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