
Expanding Low-Density Latent Regions for Open-Set Object Detection
Supplementary Material

A. More Experimental Details

A.1. Datasets

In this section, we introduce more details about the
dataset construction.
PASCAL VOC [2]. We use VOC07 train and VOC12
trainval splits for the training, and VOC07 test split
to evaluate the close-set performance. We take VOC07 val
as the validation set.
VOC-COCO-T1. We divide 80 COCO classes into four
groups (20 classes per group) by their semantics [7]: (1)
VOC classes. (2) Outdoor, Accessories, Appliance, Truck.
(3) Sports, Food. (4) Electronic, Indoor, Kitchen, Furniture.
We construct VOC-COCO-{20, 40, 60} with n=5000 VOC
testing images and {n, 2n, 3n} COCO images containing
{20, 40, 60} non-VOC classes with semantic shifts, respec-
tively. Note that we only ensure each COCO image contains
objects of corresponding open-set classes, which means ob-
jects of VOC classes will also appear in these images. This
setting is more similar to real-world scenarios where detec-
tors need to carefully identify unknown objects and do not
classify known objects into the unknown class.
VOC-COCO-T2. We gradually increase the Wilderness
Ratio to build four dataset with n=5000 VOC testing im-
ages and {0.5n, n, 2n, 4n} COCO images disjointing with
VOC classes. Compared with the setting T1, T2 aims to
evaluate the model under a higher wilderness, where large
amounts of testing instances are not seen in the training.
Comparisons with existing benchmarks. [1] proposed the
first OSOD benchmark. They also use the data in VOC
for close-set training, and both VOC and COCO for open-
set testing. In the testing phase, they just vary the number
of open-set images sampled from COCO, while ignoring
the number of open-set categories. [7] proposed an open
world object detection benchmark. They divide the open-
set testing set into several groups by category. However, the
wilderness ratio of each group is limited, and such data par-
titioning cannot reflect the real performance of detectors un-
der extreme open-set conditions. In contrast, our proposed
benchmark considers both the number of open-set classes
(VOC-COCO-T1) and images (VOC-COCO-T2).

On the other hand, some works on open-set panoptic

segmentation [6] divide a single dataset into close-set and
open-set. If a image contains both close-set and open-
set instances, they just remove the annotations of open-
set instances. Differently, we strictly follows the definition
in OSR [13] that unknown instances should not appear in
training. To acquire enough open-set examples, we take
both VOC and COCO from cross-dataset evaluation, which
is a common practice in OSR [9, 14, 16].

A.2. Implementation Details

Training schedule. Inspired by [15] that a good close-set
classifier benefits OSR, we train all models with the 3×
schedule (i.e., 36 epochs). Besides, we enable UPL after
several warmup iterations (e.g., 100 iterations) to make sure
the model produce valid probabilities.
Open-RetinaNet. We change some hyper-parameters for
Open-RetinaNet. In OpenDet, we take object proposals
as examples and apply CFL to proposal-wise embeddings,
which are equivalent to the anchor boxes in RetinaNet.
Therefore, we optimize Instance Contrastive Loss LIC with
pixel-wise features of each anchor box. Since the number of
anchor box is much larger than the proposals in OpenDet,
we enlarge the memory size Q=1024, sampling size q=64,
and loss weight to 0.2 in CFL. Similar, we sample 10 hard
examples rather than 3 in UPL.

A.3. Evaluation Metrics

Firstly, we give a detailed formulation of the Wilderness
Impact [1], which is defined as:

WI =
PK

PK∪U
− 1

=
TPK

TPK + FPK
/

TPK

TPK + FPK + FPU
− 1

=
FPU

TPK + FPK
,

(1)

where FPU means that any detections belonging to the un-
known classes CU are classified to one of known classes
CK. For APU (AP of unknown classes), we merge the anno-
tations of all unknown classes into one class, and calculate
the class-agnostic AP between unknown’s predictions and
the ground truth.
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Figure A1. Visualization of different w(·).

B. Additional Main Results
Due to limited space in our main paper, we report the re-

sults on VOC-COCO-2n in Tab. A1, where OpenDet shows
significant improves than other methods.

Method WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN [12] 24.18 24636 70.07 0
FR-CNN∗ [12] 24.05 18740 69.81 0
PROSER [16] 25.74 21107 69.32 10.31
ORE [7] 23.67 20839 70.01 2.13
DS [11] 23.21 20018 69.33 4.84

OpenDet 18.69 16329 71.44 14.96

Table A1. Comparisons with other methods on VOC-COCO-
2n. This table is an extension of Tab.2 in our main paper.

C. Additional Ablation Studies
Visual analyses of w(·). In Fig. A1, we plot the graph of
different w(·). Compared with entropy: −p log(p), the pro-
posed function (1 − p)α · p can adjsut the curve shape by
changing α. In other words, the model adjusts the weights
of examples as α changes. The right of Fig. A1 reports the
model’s open-set performance by varying α, where smaller
α reduces WI and AOSE.
Quantitative analyses of latent space. In Fig. ?? of the
main paper, we give a visual analyses of latent space. Here
we give a quantitative analyses of latent space in Tab. A2.
Specifically, we calculate the intra-class variance and inter-
class distance of latent features. Tab. A2 shows that CFL
and UPL, as well as their combination reduce intra-class
variance and enlarge inter-class distance. The results further
confirm our conclusion in the main paper that our method
can expand low-density latent regions.
More hyper-parameters in CFL. Loss weight: Tab. A3
shows that loss weight is important for LIC , where a small
weight (e.g., 0.01) cannot learn compact features and a large
weight (e.g., 1.0) hinder the generalization ability. Besides,
Tab. A3 (last column) also demonstrates the effectiveness
of loss decay. Temperature: We try different τ that used
in pervious works [3, 8]. Tab. A4 indicates that τ=0.1 [8]
works better than other settings.

metric baseline +CFL +UPL Ours
intra-variance 3.79 2.83 3.05 2.47
inter-distance 62.74 65.17 64.69 66.31

Table A2. Quantitative analyses of the latent space. We calcu-
late the intra-class variance and inter-class distance of latent fea-
tures.

γt 0.01 0.1 0.5 1.0 w/o decay
WI↓ 16.13 14.95 12.26 9.71 15.65

mAPK↑ 58.90 58.75 57.47 53.36 58.43
Table A3. Loss weight of LIC . w/o decay: γt is a constant (i.e.,
0.1) instead of variable.

τ 0.07 [3] 0.1 [8] 0.2
WI↓ 15.48 14.95 15.50

mAPK↑ 57.80 58.75 58.87
Table A4. Temperature τ in LIC .

setting backbone epoch WI↓ mAPK↑

end-to-end - - 14.95 58.75

fine-tune
fixed 1 17.98 56.88
fixed 12 17.43 56.86

trainable 12 17.01 57.19

Table A5. End-to-end vs. fine-tune in UPL. End-to-end: we
jointly optimize UPL and other modules in OpenDet. Fine-tune:
we pretrain a model without UPL, and optimize UPL in the fine-
tuning stage.

Training strategy. Some works in OSR [16] adopted a
pretrain-then-finetune paradigm to train the unknown iden-
tifier. We carefully design the UPL so that OpenDet can be
trained in an end-to-end manner. Tab. A5 shows that jointly
optimizing UPL performs better than that of fine-tuning.
Open-RetinaNet. To further demonstrates the effective-
ness of Open-RetinaNet, we report more results in Tab. A6,
where Open-RetinaNet shows substantial improvements on
WI, AOSE and APU , and achieves comparable performance
on mAPK.
Vision transformer as backbone. We find the detector
with vision transformer, e.g., Swin Transformer [10] is a
stronger baseline for OSOD. As shown in Tab. A7, models
with a Swin-T backbone significantly suppress their ResNet
counterparts.
Speed and computation. In the training stage, OpenDet
only increases 14% (1.4h vs. 1.2h) training time and 1.2%
(2424Mb vs. 2395Mb) memory usage. In the testing phase,
as we only add the unknown class to the classifier, Open-
Det keeps similar running speed and computation with FR-
CNN.

D. Comparison with ORE [7]
Implementation details. The original ORE adopted a R50-
C4 FR-CNN framework, and train the model with 8 epochs.
For fair comparisons, we replace the R50-C4 architecture
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Method WI↓ AOSE↓ mAPK↑ APU↑

VOC:
RetinaNet - - 79.84 -
Open-RetinaNet - - 79.72 -
VOC-COCO-40:
RetinaNet 17.60 58383 53.81 0
Open-RetinaNet 13.65 25964 53.22 8.23
VOC-COCO-60:
RetinaNet 14.20 64327 54.68 0
Open-RetinaNet 11.28 30631 54.25 3.20

Table A6. Open-RetinaNet on more datasets.

Method backbone WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN
ResNet-50 18.39 15118 58.45 0

Swin-T 15.99 13204 63.09 0

OpenDet
ResNet-50 14.95 11286 58.75 14.93

Swin-T 12.51 9875 63.17 15.77
Table A7. Comparisons of different backbones, i.e., ResNet-
50 [4] and Swin-T [10].

Method
train model

on valset
WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN × 18.39 15118 58.45 0

ORE
× 8.46 2909 53.96 9.64
✓ 16.98 12868 58.35 5.13

OpenDet × 14.95 11286 58.75 14.93
Table A8. Comparison with ORE [7]. The row with gray back-
ground is reported in our main paper.

with R50-FPN, and train all models with 3× schedule.
Besides, as discussed in these issues1, we report our re-
implemented results when comparing with ORE in an open
world object detection task (see Tab. A9).
Analysis of ORE. To learn the energy-based unknown iden-
tifier (Sec 4.3 in [7]), ORE requires an additional valida-
tion set with the annotations of unknown classes. We notice
that ORE continues to train on the validation set, so that the
model can leverage the information of unknown classes. In
Tab. A8, we find ORE without training on valset (i.e., froze
parameters) obtains a rather lower mAPK (53.96 vs. 58.45),
and large amounts of known examples are misclassified to
unknown. In contrast, OpenDet outperforms ORE without
using the information of unknown classes.
Results on open world object detection. We also compare
OpenDet with ORE in the task1 of open world object de-
tection. As shown in Tab. A9, without accessing open-set
data in the training set or validation set, OpenDet outper-
forms FR-CNN and ORE by a large margin and achieves
comparable results with the Oracle.

E. Comparison with DS [11]
Implementation details. DS averages multiple runs of a
dropout-enabled model to produce more confident predi-

1https://github.com/JosephKJ/OWOD/issues?q=cannot+reproduce

Method
use unknown’s annotation

WI↓ AOSE↓ mAPK↑in train set in val set
FR-CNN
(Oracle)

✓ × 4.27 6862 60.43

FR-CNN × × 6.03 8468 58.81
ORE × ✓ 5.11 6833 58.93

OpenDet × × 4.44 5781 59.01

Table A9. Results on open world object detection [7].

Method #runs WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN 1 18.39 15118 58.45 0

DS

1 15.26 18227 56.60 5.67
3 16.41 14593 57.88 5.48
5 16.76 13862 57.98 5.31
10 16.91 13327 58.24 4.97
30 16.98 12868 58.35 5.13
50 17.01 12757 58.29 4.94

OpenDet 1 14.95 11286 58.75 14.93

Table A10. Comparison with DS [11]. #runs denotes the number
of runs used for ensemble. The row with gray background is re-
ported in our main paper.

tions. As DS has no public implementation, we implement
it based on the FR-CNN [12] framework. Specifically, we
insert a dropout layer to the second-last layer of the classi-
fication branch in R-CNN, and set the dropout probability
to 0.5. Previous works [1, 7] indicate that DS works even
worse than the baseline method; we show it is effective as
long as we remove the dropout layer during training, i.e.,
we only use the dropout layer in the testing phase. Besides,
original DS can only tell what is known, but do not have
a metric for the unknown (e.g., the unknown probability in
OpenDet). We give DS the ability to identify unknown by
entropy thresholding [5]. In detail, we define proposals with
the entropy larger than a threshold (i.e., 0.25) as unknown.
DS with different #runs. DS requires multiple runs for a
given image. We report DS with different number of #runs
in Tab. A10. By increasing #runs, DS shows substantial
improvements on AOSE and mAPK, while the performance
on WI becomes worse. We report DS with 30 #runs in our
main paper, which is consistent with its original paper [11].

F. More Qualitative Results.
Fig. A3 gives more qualitative comparisons between the

baseline method and OpenDet. OpenDet can recall un-
known objects from known classes and the ”background”.
Besides, we also give two failure cases in Fig. A2. (a) We
find OpenDet performs poorly in some scenes with dense
objects, e.g., images with lots of person. (b) OpenDet
classifies ”real” background to the unknown class.
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(a) (b)

Figure A2. Failure cases.
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Figure A3. More qualitative comparisons between the baseline and OpenDet.
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