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Figure 1. A detailed illustration of decoder of feature branch and
encoder. The decoder takes the ”res4” feature map from the en-
coder as the input with normalized coordinates by concatenating
two additional input channels. ’⊕’ denotes element-wise summa-
tion.

1. Branch Structure Details

The backbone network for the encoder is ResNet50 [1]
and we use the ”res4” feature map as the input of the cate-
gory branch and the mask branch.

1.1. Category Branch

For each grid, the category branch predicts C-
dimensional output of the semantic class probabilities,
where C is the number of predefined classes. The category
branch consists of 8× convolutional layers and takes the re-
sized feature map from the backbone network as the input.
Resizing to Sh × Sw is performed by bilinear interpolation,
where Sh and Sw are the number of grids in height and
width, respectively. Note that after the first convolutional
layer, the resulting feature map (key feature map) is used
to obtain grid similarities through memory matching mod-
ule, also after another three convolutional layers, the result-
ing feature map (category feature map) is added with the
output from the temporal aggregation module. The tempo-
ral aggregation provides additional appearance information
of the same instance observed in previous frames. These
feature maps (key and category feature maps) are used to
update the external memory for the memory matching and
temporal aggregation modules. Before the final prediction,
the object scores are calibrated using the weights from the
score reweighting module that also utilizes the information
from previous frames. The category branch generates an
output tensor Cat ∈ RSh×Sw×C .

1.2. Mask Branch

We use the dynamic head from SOLOv2 [6] as the mask
branch. The dynamic head consists of two sub- branches:
feature branch and kernel branch. Both branches take the
feature map from the backbone network as the input with
normalized coordinates by concatenating two additional in-
put channels for the spatial information. The feature branch
predicts instance-aware feature map F ∈ RH/4×W/4×E

through decoder, where H and W are the height and width
of input frames respectively and E is the feature dimension.
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Figure 2. Visualization of our temporal aggregation module operation. We first compute the grid similarities between query grids and all
grids of reference frames, and obtain the soft weight by a softmax operation. Then, we visualize the normalized soft weight of the reference
frames. The query grids and weights of each grid of reference frames with respect to the query grids are assigned with the different colors.

In the feature branch, we employ the refinement module
used in [4] as the building block of the decoder. The re-
finement module consists of the convolutional layer, resid-
ual block [2], and the interpolation operator. The module
takes the feature maps of the encoder through the skip-
connections. Every convolutional layer in the decoder uses
3× 3 filter and produces 256-channel output; the last one
uses 1× 1 filter. The decoder of the feature branch and the
encoder are illustrated in Fig. 1.

The kernel branch predicts 1× 1 convolution kernel
weights K ∈ RSh×Sw×E , conditioned on each grid’s lo-
cation. It consists of 6× convolutional layers that produce
256-channel output, using 3× 3 filters except for the last
layer (1× 1). Note that after the first three convolutional
layers, the resulting feature map (mask feature map) is
added with the output from the temporal aggregation mod-
ule in order to provide additional kernel information of the
same instance observed in previous frames, also it is used to
update the external memory queue for the temporal aggre-
gation module. To obtain the instance mask for grid (i, j),
F is convolved by (i, j) output of the kernel branch, which
is a 1× 1 convolution kernel. The mask branch estimates
the mask on a 1/4 scale of the input frames.

2. Implementation Details
2.1. Training Details

For the training, we use the image instance segmenta-
tion dataset COCO [3], and two video instance segmenta-
tion datasets YouTube-VIS 2019 and 2021 [7]. To exploit
the static image dataset for video instance segmentation, we
transformed static images into 3-frame synthetic videos us-
ing random affine transformations.

First, our network is trained on the COCO [3] dataset for

pre-training with the batch size 16 for 60 epochs and the ini-
tial learning rate of 1e-4, which decays at 40 epochs. After
pre-training, we fine-tune the our network on the youtube
VIS 2019 and 2021 datasets together with COCO dataset
to prevent overfitting. When combining datasets, we use
21 classes of COCO that are related with 40 classes of
YouTube-VIS 2019 and 2021, respectively. During fine-
tuning, we sampled training data with the following dis-
tribution: (YouTube-VIS 2019 (75%), COCO (25%)) and
(YouTube-VIS 2021 (75%), COCO (25%)), depending on
the test dataset. In fine-tuning, our network trained with
batch size 20 for 68 epochs iterations and the initial learn-
ing rate of 1e-4, which decays at 30 epochs and 52 epochs.
In both training stage, each batch consists of 3 frames.

We use randomly cropped 356x624 patches for the train-
ing, and the inference image size is set to 356x624, which
is the same size as the training patch. As for the label as-
signment, to generate the target category probability and the
mask, we use the same metric of SOLO [5]. For the tar-
get grid similarity Sim ∈ R(Sh·Sw)×(Sh·Sw), we assign ’1’
to every grid that contain the center region of the same in-
stances between two frames. Otherwise, we assign ’0’.

2.2. NMS

To obtain the final instance segmentation results for each
frame, first we filter out the outputs from the category
branch and the mask branch with the threshold 0.1. Then,
we apply the Matrix NMS introduced in SOLOv2 [6] and
use the segmented instances with a score higher than 0.05
as the final results. The binary masks of the instances are
produced by applying the threshold of 0.5. The redundant
instance masks may still remain after applying the Matrix
NMS. If there are masks with IoU∗ greater than 0.5, we
further remove the instance mask that has lower classifica-



tion score. IoU∗ is defined as:

IoU∗(i, j) =

∣∣Mi ∩Mj
∣∣

|Mj |
, for score(i) ≥ score(j), (1)

where i and j are indices of the instance masks, and the
score indicates the classification score.

3. Additional Analysis
In Fig. 2, we provide more visualizations for the soft

weights that are used to retrieve the information of the
reference frames in the temporal aggregation module, i.e.
weights of each grid of the reference frames with respect
to the query grids. Our temporal aggregation module ac-
curately gathers the appearance information from the refer-
ence frames.

4. Video Comparisons
We provide the overall flow of our VISOLO and the

comparison of different VIS methods on the YouTube-
VIS 2019 dataset [7] at https : / / youtu . be /
2e8DLjCZf40. We compare our method, VISOLO, with
two other online methods: MaskTrack R-CNN [7] and
CrossVIS [8]. We chose example videos from the valida-
tion set of YouTube-VIS 2019 dataset [7]. The video re-
sults suggest that VISOLO produces more robust instance
tracks than other online methods, even in difficult cases
with occlusion and complex motion. Furthermore, since the
YouTube-VIS 2019 validation set for evaluating consists of
5 frame intervals, we also provide video results of our VI-
SOLO using all frames of video in the accompanying video
(VISOLO.mp4)

5. Broader Impact
Our framework is designed for the online video instance

segmentation, which targets to classify and generate spatio-
temporal pixel masks for all objects in the video in an online
manner. Recently, while many online methods are intro-
duced and show promising results, these methods do not
make full use of the information of previous frames. In
comparison, our VISOLO focuses on maximizing the use
of available information from previous frames while main-
taining speed. We believe our network can positively impact
many VIS applications that require high accuracy and run-
ning in real-time, e.g. autonomous navigation of robots and
cars. We want to note that for the community to move in
the right direction, the studies on VIS should be aware of
potential misuses which violates personal privacy.
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