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A. Overview
In this supplementary, we provide the detailed structure

of our image harmonization network G in Section B to en-
sure better understanding and reproducibility. Besides, we
conduct more ablation studies about our BAIN in Section
C. More comparison results on real composite images are
shown in Section D. Finally, we discuss the limitation of
our method in Section E.

B. Network Structure
The detailed structure of our image harmonization net-

work G is shown in Table 1. Symbols of the operators are
listed as follows:

• Conv(cin, cout, k, s, p): a convolution operation with
cin input channels, cout output channels, kernel size of
k, stride size of s, and padding p.

• ConvTrans(cin, cout, k, s, p): a transposed convolution
operation with cin input channels, cout output chan-
nels, kernel size of k, stride size of s, and padding p.

• IN(n): instance normalization with n dimensions.

• RAIN(n): region-aware adaptive instance normaliza-
tion [3] with n dimensions.

• BAIN(n): the proposed background-attentional adap-
tive instance normalization with n dimensions.

Following [1,3], we also use attention blocks to improve
the performance of the simple U-Net architecture. Specifi-
cally, we add four attention blocks in the decoder part. The
structure of our attention block is the same as [3].

C. More Ablation Studies
In the main text, we have conducted many ablation stud-

ies for our self-consistent style contrastive learning scheme
(SCS-Co). To prove the effectiveness of our BAIN, we con-
duct many ablation studies on BAIN in this section.

Table 1. The structure of our image harmonization network.

# Layer name(s)
0 Conv(3, 64, 3, 1, 1)
1 LReLU + Conv(64, 128, 4, 2, 1) + IN(128)
2 LReLU + Conv(128, 256, 3, 1, 1) + IN(256)
3 LReLU + Conv(256, 512, 4, 2, 1) + IN(512)
4 LReLU + Conv(512, 512, 3, 1, 1) + IN(512)
5 LReLU + Conv(512, 512, 4, 2, 1) + IN(512)
6 LReLU + Conv(512, 512, 3, 1, 1) + IN(512)
7 LReLU + Conv(512, 512, 4, 2, 1) + IN(512)
8 ReLU + ConvTrans(512, 512, 4, 2, 1) + BAIN(512)
9 Concat[#6, #8]
10 ReLU + ConvTrans(1024, 512, 3, 1, 1) + RAIN(512)
11 Concat[#5, #10]
12 ReLU + ConvTrans(1024, 512, 4, 2, 1) + RAIN(512)
13 Concat[#4, #12]
14 ReLU + ConvTrans(1024, 512, 3, 1, 1) + RAIN(512)
15 Concat[#3, #14] + Attention Block
16 ReLU + ConvTrans(1024, 256, 4, 2, 1) + RAIN(256)
17 Concat[#2, #16] + Attention Block
18 ReLU + ConvTrans(512, 128, 3, 1, 1) + RAIN(128)
19 Concat[#1, #18] + Attention Block
20 ReLU + ConvTrans(256, 64, 4, 2, 1) + RAIN(64)
21 Concat[#0, #20] + Attention Block
22 ReLU + ConvTrans(128, 3, 3, 1, 1) + Tanh

In Table 2, we construct three models: (1) A baseline
model, which means we replace BAIN of layer #9 (see
Table 1) with RAIN. (2) Our model with BAIN, which is
consistent with Table 1. (3) For our BAIN, the process
of obtaining an attention map based on the foreground-
background feature similarity is similar to self-attention [6],
and as we all know, self-attention is a powerful tool to im-
prove model performance. Therefore, in order to prove that
the gain brought by BAIN is not just because of this, we
construct a model that replaces BAIN with a combination
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of self-attention and RAIN.

Table 2. Ablation studies on our BAIN.

Method PSNR↑ MSE↓ fMSE↓
w/ RAIN 37.55 27.81 294.64
w/ BAIN 37.84 25.23 269.05

w/ self-attention + RAIN 37.66 26.29 281.15

As shown in Table 2, we can find that model with
our BAIN obtains the best performance. Besides, com-
pared with model with the combination of self-attention and
RAIN, model with our BAIN obtains a huge performance
gain. These comparisons indicate that properly normalizing
the foreground feature by the per-point attention-weighted
background feature statistics according to the foreground-
background feature similarity contributes to image harmo-
nization greatly.

D. Results on Real Composite Images
In this section, we present more results of 99 real com-

posite images released by [5] and compare our method
with other state-of-the-art methods in Figure 1 to 12. As
can be found, thanks to the proposed SCS-Co and BAIN,
our method achieves more photorealistic visual results than
other methods in most cases.

E. Limitation
Our method is a supervised method, so it needs high-

quality paired harmonization data. However, collecting
these paired data is time-consuming and laborious, which
requires an accurate mask of the foreground object in each
image. Recently, the first self-supervised image harmo-
nization method is proposed [2] and achieves good perfor-
mance. Since contrastive learning is a powerful tool for
self-supervised learning, in the future we will explore how
to build a self-supervised style contrastive learning scheme
suitable for image harmonization.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 1. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 2. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 3. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 4. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 5. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.

7



Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 6. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 7. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 8. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 9. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 10. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 11. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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Real Composite DIH [5] DoveNet [1] iS2AM [4] RainNet [3] Ours

Figure 12. Visual comparison results on real composite images released by [5]. Red boxes in composite images mark foreground.
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