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Sec. 1 reports additional experiments and analysis.
Sec. 2 elaborates on the procedure of action proposal gener-
ation. Sec. 3 provides more dataset-specific implementation
details and hyper-parameters for training and testing. We
also provide more qualitative results in Sec. 4. We discuss
the limitation and broader impact of our work in Sec. 5 and
Sec. 6.

1. Additional Experiments and Analysis

Error analysis. To analyze the effectiveness of our ASM-
Loc, we conduct a DETAD [1] false positive analysis of
the base model without any action-aware segment model-
ing modules and our ASM-Loc. We present the results in
Figure 4. It shows a detailed categorization of false posi-
tive errors and summarizes the distribution of these errors.
G represents the number of ground truth segments in the
THUMOS-14 dataset. We can observe that ASM-Loc gen-
erates more true positive predictions with high confidence
scores and produces less localization error and confusion
error (at the top 1G scoring predictions). It verifies that
ASM-Loc improves the detection results by predicting more
accurate action boundaries with our action-aware segment
modeling modules.

Ablation on the increased receptive field. To further
demonstrate that the effectiveness of our intra- and inter-
segment attention modules is due to the segment-centric
design instead of the increased receptive field, we replace
our intra- and inter-segment attention modules with convo-
lutional layers and compare the experimental results. From
Table 8 we can see that by replacing the attention modules
with convolutional layers, the performances drop by at least
3.3%, and even fall below the base model. We hypothesize
that increasing the kernel size of the convolutional layers
may lead to confusion between foreground and background
snippets especially near the action boundaries. In contrast,
our segment-centric attention design can model temporal
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Figure 4. Diagnosing detection results. We present DETAD [1]
false positive profiles of the base model and our ASM-Loc.

structures within and across action segments and localize
actions more precisely. The results verify that the segment-
centric design is the key to our intra- and inter-segment at-
tention modules.

2. Action Proposal Generation

In Alg. 2, we present the details of how to generate ac-
tion proposals S̃ from the action localization results (i.e.,
action segments) S. Specifically, we first sort all the seg-
ment scores across the set S(c) for each ground-truth class
c. Then we sum the confidence scores of all the action seg-
ments and output qsum, and pick the top-K action segments
with their confidence scores summation equal to α∗qsum to
form the action proposals. Note that the number of the ac-
tion proposals is video-adaptive and content dependent, de-
spite α is shared for all videos. Finally, following the com-
mon practice in temporal action localization [2–5], we ex-
tend each proposal on both ends by δ of the proposal length
to get an extended proposal with a longer temporal duration
which can take more context-related snippets into consider-
ation.
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Algorithm 2: Action Proposal Generation

Input: Predicted Action Segments S = {(si, ei, ci, qi)}Ii=1, selection ratio α, segment extension parameter δ
Output: Action Proposals S̃ = {(s̃n, ẽn, c̃n)}Nn=1

1 for ground-truth class c do
2 S(c)sorted ← SORT(S(c)) // sort segments by scores of class c
3 qsum =

∑
qi // sum confidence scores for all segments

4 Select K, s.t. maxK
∑K

i=1 qi ≤ α ∗ qsum // select top-K segments from S(c)sorted
5 S̃(c) : {s̃i, ẽi, c̃i}Ki=1 = {si− δ(ei− si), ei+ δ(ei− si), ci}Ki=1 // extend selected segments on both sides
6 end

Table 8. Ablation on the increased receptive field.

Modeling Kernel
Size

mAP@IoU (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

Base - 67.8 60.7 51.8 41.3 30.7 19.9 10.1 40.3

3 66.2 59.3 50.5 39.9 29.9 19.2 9.1 39.2

Conv 5 66.5 58.9 51.0 40.0 29.7 19.3 9.8 39.3
9 67.1 59.8 50.4 40.1 29.1 19.2 10.2 39.4

Attention - 68.9 63.1 54.9 44.5 34 22.0 11.9 42.7

Table 9. Ablation on different action proposal selection methods.

Method mAP@IoU (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

(a) 69.9 63.8 56 45.8 36.6 25.0 13.5 44.4
(b) 70.5 64.6 57.3 46.8 35.7 24.3 14.2 44.8
(c) 71.2 65.5 57.1 46.8 36.6 25.2 13.4 45.1

To verify the effectiveness of our proposal generation de-
sign, we compare three different settings of the segment se-
lection procedure: (a) Fixed number of selected action seg-
ments where K is a fixed value for each class, which is not
video-adaptive and content dependent; (b) K proportional
to the number of predicted action segments in S(c), where
K = α ∗ |S(c)|; (c) our design. In Table 9, we can see that
our design achieves the best results among the three designs.

3. Experiment Details
For the hyper-parameters, we set λfg = 1, λbg =

0.5, λabg = 0.5, β = 0.2, γ = 6, H = 8, δ = 0.5, α = 0.7
for THUMOS-14 and λfg = 5, λbg = 0.5, λabg = 0.5, β =
0.2, γ = 10, H = 8, δ = 0, α = 0.3 for ActivityNet-v1.3.

Following [6, 7], during inference, we use a set of
thresholds to obtain the predicted action instances, then
perform non-maximum suppression to remove overlapping
segments. Specifically, for THUMOS-14, we set the fore-
ground attention threshold from 0.1 to 0.9 with step 0.025,
and perform NMS with a t-IOU threshold of 0.45. For
ActivityNet-v1.3, we set the foreground-attention threshold
from 0.005 to 0.02 with step 0.005, and apply NMS with a
t-IoU threshold of 0.9.

(a) An example of “HammerThrow” action

(b) An example of “Shotput” action

GT
Base

GT
Base

Proposals

Proposals

ASM-Loc

ASM-Loc

(c) An example of “CleanAndJerk” action

GT
Base

Proposals
ASM-Loc

Figure 5. Visualization of ground-truth, predictions and action
proposals. Top-2 predictions with the highest confidence scores
are selected for the base model and our ASM-Loc. Transparent
frames represent background frames.

We implement our method in PyTorch [8] and train it on
a single NVIDIA RTX1080Ti gpu.

4. More Qualitative Results

We provide more qualitative results in Figure 5. The first
example of action “HammerThrow” shows the missed de-
tection of short actions and over-completeness error. The
second and third example of action “Shotput” and action
“CleanAndJerk” shows the incompleteness error. It clearly
shows that our ASM-Loc can help address these errors with
more accurate action boundary predictions.



5. Limitation
The main limitation of our ASM-Loc is that the perfor-

mance of our action-aware segment modeling modules de-
pends on the generated action proposals. When the action
proposals are largely misaligned with the ground-truth ac-
tion segments, our ASM-Loc is not able to fix the error and
generate correct predictions, as shown in Figure 3.

6. Broader Impacts
As the most popular media format nowadays, most in-

formation is spread in the format of videos. The temporal
action localization task aims at finding the temporal bound-
aries and classifying category labels of actions of interest
in untrimmed videos. Unlike supervised learning based ap-
proach that requires dense segment-level annotations, our
proposed weakly-supervised temporal action localization
model ASM-Loc only requires video-level labels. There-
fore, WTAL is much more valuable in the real-world appli-
cations such as popular video-sharing social-network ser-
vices, where billions of videos have only video-level user-
generated tags. Besides, WTAL has broad applications in
various fields, e.g. event detection, video summarization,
highlight generation and video surveillance.
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