
Density-preserving Deep Point Cloud Compression
(Supplementary Material)

Yun He1∗ Xinlin Ren1∗ Danhang Tang2 Yinda Zhang2 Xiangyang Xue1 Yanwei Fu1

1 Fudan University 2 Google

In this document, we provide additional implementation
details, ablation studies and qualitative results. Limitation
and potential ethic concerns are also discussed.

1. Implementation Details
Additional details about hyperparameter settings, de-

tailed network architecture, and diagrams of baselines used
in ablation study are elucidate in this section. We also for-
mulate the reconstruction metrics used in experiments.

1.1. Hyperparameters

In the experiments, we choose the number of stages
S = 3 and the downsampling factor fs ∈ {1/2, 1/3}. We
set dimension d = 8 for all three embeddings extracted by
the encoder, and maximum upsampling factor U = 8 in the
decoder. For distortion loss, we set the weight of density
loss α = 1e − 4 and cardinality loss β = 5e − 7. Where
in density loss, the coefficient γ = 5. And the weight µ for
density metric is setted as 1. For normal compression, we
additionally add a L2 loss between the reconstructed nor-
mals and ground truth , and its weight is 1e − 2. To obtain
the rate-distortion trade-off curves, we vary the coefficient
of rate loss λ and downsampling factor fs. Moreover, in the
adaptive scale upsampling block, we use an icosahedron to
sample uniformly on a unit sphere to get M = 43 candidate
directions, which include 42 vertices of the icosahedron and
1 origin, following [12].

Our model is implemented with Pytorch [8] and Com-
pressAI [1], trained on a NVIDIA TITAN X GPU for 50
epochs. We use the Adam optimizer [6] with a initial learn-
ing rate of 1e-3 and a decay factor of 0.5 every 15 epochs.

1.2. Detailed Network Architecture

The detailed architectures of our encoder and decoder
are shown in Fig 1 and Fig 2 separately. At stage s of the

∗indicates equal contribution.
Yun He, Xinlin Ren and Xiangyang Xue are with the School of Com-

puter Science, Fudan University.
Yanwei Fu is with the School of Data Science, Fudan University.

encoder, for each point p ∈ Ps+1, we first extract local
position embedding FP and density embedding FD to cap-
ture the local geometry and density information of current
stage. And ancestor embedding FA is also utilized to aggre-
gate features from previous stages by applying point trans-
former layer [14], based on the collapsed points set C(p).
However, the cardinality of each point’s collapsed set may
be different. To achieve parallel process, we first find the
k-nearest neighbor K(p) in Ps for each downsampled point
p, and then apply a mask when using attention for feature
aggregation. Specifically, the mask is defined as below:

wk =

MLPs(F(pk)), if pk ∈ K(p) and pk ∈ C(p)

0, else
(1)

where wk and F(pk) are the weight and feature of pk. We
set k = 20, which is much larger than 1/fs, so the collapsed
set C(p) is guaranteed to be the subset of K(p).

And in the decoder, we apply sub-point convolution to
construct the scale-adaptive upsampling block, which pro-
motes the recovering of local geometry patterns and density.

1.3. Reconstruction Metrics

We use the symmetric point-to-point Chamfer Distance
and point-to-plane PSNR to evaluate the geometry accuracy
of reconstructed point clouds. And now we list their math-
ematical formulas.

Given ground truth Ps and reconstructed point cloud P̂s,
the calculation of symmetric point-to-point Chamfer Dis-
tance is as follow:

CD(Ps, P̂s) =
1

|Ps|
∑
p∈Ps

min
p̂∈P̂s

∥p− p̂∥22 +
1

|P̂s|

∑
p̂∈P̂s

min
p∈Ps

∥p̂− p∥22

(2)
Following [2], we calculate the symmetric point-to-plane

PSNR as:

PSNR(Ps, P̂s) = 10 log10
3σ2

max{MSE(Ps, P̂s),MSE(P̂s,Ps)}
(3)

where σ is the peak constant value, represented by the max-
imum nearest neighbor distance in the whole dataset [2].

1

Input Block

Conv1d,

Downsampling Unit

Downsampling Unit

Downsampling Unit

FPS

Conv1d,

Input Block

Conv1d,

Conv1d,

Point Transformer
Layer

Ancestor Embedding

Output Block

Local Point
Distribution

Conv2d,

Conv2d,

Conv2d,

Conv2d,

Conv1d,

Conv1d,

Sum

Local Position
Embedding

Downsampling
Factor

Density Embedding

Mask

Downsampled Block

Downsampling Unit
Output Block

Input Block

Conv1d, Conv1d, Conv2d,

Conv2d,

Position Embedding

Query and Key Value

Conv1d,

Conv2d,

Conv2d,
Mask

Output Block

Point Transformer
Layer

Find K-Nearest Neighbor

Find K-Nearest Neighbor Find K-Nearest Neighbor

Conv, Kernel Size,
Output Channel

Conv, Kernel Size,
Output Channel

Conv + GroupNorm + ReLU ConvData

Figure 1. The detailed architecture of our encoder. The text below each box indicates the feature dimension: batchsize × points number ×
(k-nearest neighbor) × channel. And the stride of all convolution layers is fixed to 1.

Input Block

Upsampling Unit

Upsampling Unit

Upsampling Unit

Input Block

Upsampling Ratio :Conv1d,

Conv2d,

Upsampling Unit

Upsampling Factor

maximum factor

Candidate Points
and Features

Selected Points and
Features

Sigmoid

Output Block

Output Block

Refinement
Upsampling Ratio : 1

Select

Weights

Scales

Unit
Sphere

Candidate
Directions

Uniform
Sample

Sub-point
Convolution Module

D
ire

ct
io

ns

Input
Points

D
up

lic
at

e

Offsets
Upsampled

Points

Duplicate

Input
Features

Upsampled
Features

Sub-point
Convolution Module

Upsampled
Features

Duplicate

Sum

Sub-point
Convolution Module

Sub-point Conv1d, Sub-point Conv1d, Sub-point Conv1d,

Sub-point Convolution Module

Scale-adaptive Upsampling Block

Upsampling Ratio: R Conv, Kernel Size,
Output Channel

Conv, Kernel Size,
Output Channel

Data Scale-adaptive Upsampling Block Conv + ReLU Conv

Figure 2. The detailed architecture of our decoder. The text below each box indicates the feature dimension: batchsize × points number ×
(k-nearest neighbor) × channel, where N̂2 ≈ N/9, N̂1 ≈ N/3, N̂0 ≈ N . And the stride of all convolution layers is fixed to 1.

MSE(Ps, P̂s) =
1

|Ps|
∑

p∈Ps
((p− p̂) · n̂)2, where p̂ is p’s

nearest neighbor in P̂s, and n̂ is the normal of p̂. For each
p ∈ Ps, we estimate its normal using [15]. And for each
p̂ ∈ P̂s, we use the normal of its nearest neighbor in Ps as
n̂.

While Chamfer Distance and PSNR can only be used
for position compression, we apply F1 score to measure the
quality of both reconstructed locations and normals during
normal compression, based on [2].

F1(Ps, P̂s) =
2TP

2TP + FP + FN
(4)

where TP (true positives) represent those reconstructed
points (p̂, n̂) ∈ P̂s which have a corresponding ground

truth point (p, n) ∈ Ps that satisfies ||p − p̂||2 ≤ τp and
||n−n̂||2 ≤ τn; FP (false positives) indicate the rest recon-
structed points; and FN (false negatives) are those ground
truth points which do not have a corresponding TP . For Se-
manticKITTI, we set τp = 0.5, τn = 0.5; and for ShapeNet,
we set τp = 0.05, τn = 0.2.

1.4. Baselines in Ablation Study

In the Table 2 of main paper, we validate the effective-
ness of each component in our method. To achieve so,
we first build a baseline model, which is composed of a
point transformer encoder [14], entropy encoder and multi-
branch MLPs decoder [13]. And we utilize a fixed up-

sampling factor 1/fs for this baseline. Then we add the
following components incrementally: dynamic upsampling
factor û, local position embedding FP , density embedding
FD, scale-adaptive upsampling block, sub-point convolu-
tion and upsampling refinement layer. Here we draw the
detailed structures of each model, as shown in Fig 3. Note
that for all these models, we adopt the same pipeline, and
only enable our contributing component once a time.

2. Additional Ablation Studies

In this section, we conduct some more ablation experi-
ments to validate our choices of downsampling methods and
loss functions. And all these experiments are conducted on
SemanticKITTI with fixed bpp 2.1, the same as the main
paper.

2.1. Downsampling Methods

At stage s of the encoder, we use FPS to get the down-
sampled point cloud Ps+1, which expected to have a good
coverage of the input Ps. Besides FPS, there are also
two common downsampling methods: random downsam-
pling (RD) and grid downsampling (GD) [11]. And we re-
place FPS with these two downsampling methods in turn,
as shown in Table 1. It is obvious that FPS can significantly
improve the accuracy of reconstruction because it has better
coverage, both in terms of geometry and local density.

Downsampling
Methods CD (10−2) ↓ PSNR ↑ DM ↓

RD 1.29 41.17 3.08
GD 0.62 42.86 2.31
FPS 0.36 44.03 1.98

Table 1. The effectiveness of different downsampling methods. It
is clear that FPS delivers the best performance.

2.2. Loss Functions

In our framework, we adopt the standard rate-distortion
loss function for training. And the symmetric point-to-point
Chamfer Distance Dcha is used as the distortion loss D,
while the estimated bits number is used as the rate loss R.
In addition to these two loss functions, we also extend the
distortion loss by designing the density loss Dden and cardi-
nality loss Dcard to facilitate the recovery of local density.
For validating the new loss functions Dden and Dcard, we
remove them degressively, as shown in Table 2.

As cardinality loss Dcard is removed, all metrics drop
slightly. However, once the constrain of local density is ab-
sent, the reconstruction quality will drop sharply, indicating
the effectiveness of our designed density loss.

Loss Functions CD (10−2) ↓ PSNR ↑ DM ↓
Full Loss Functions 0.36 44.03 1.98
-Dcard 0.47 43.62 2.15
-Dden 1.45 40.74 3.59

Table 2. The effectiveness of loss functions. Each row a loss func-
tion is romoved based on the top of previous row.

3. Additional Qualitative Results

In this section, we show more qualitative results on
position compression, normal compression and down-
stream tasks, which clearly indicate that our density-
preserving compression approach achieves the best per-
formance. Specifically, in Fig 4, we show more qualita-
tive position compression results on SemanticKITTI and
ShapeNet. In Fig 5, we visualize the normal compression
results by employing Poisson reconstruction [5] on decom-
pressed points and normals. In Fig 6 and Fig 7, we display
the qualitative results of two downstream tasks: surface re-
construction and semantic segmentation.

4. Limitation Discussion

Although our density-preserving deep point cloud com-
pression framework is effective, it also has some limitations.
For example: 1) The maximum upsampling factor U is pre-
defined before decoding, thus the actual upsampling factor
û is expected to be less than or equal to U . However, the as-
sumption may be broken in some cases, especially when the
local area is extremely dense, then our method may not be
able to recover the local density precisely. 2) As we divide
the point clouds into small blocks, each block may contain
various number of points, so they are not easy to perfectly
parallelized. 3) Other hyperparameters such as the weight
of loss, the dimension of embedding, etc may be adaptively
adjusted on different datasets. Moreover, we show some
failure cases on extremely sparse point clouds in Fig 8. As
we assume that there exists some data redundancy in the
local areas of point clouds, so we can compress it while
achieving tolerable distortion. However, this assumption
may not hold when the point cloud is very sparse, and even
the downsampled point cloud cannot describe the underly-
ing geometry any more, hence is hard for reconstruction.

At last, we discuss the possible ethical issues. In general,
since our point cloud compression algorithm is agnostic to
the contents of point clouds, the responsibility of handling
ethical issues belongs to the point cloud creator. That be-
ing said, as compressed point clouds may be intercepted by
hackers during network transmission, which may result in
data leakage, common encryption algorithms can be applied
on the bottleneck point clouds and features to protect user
privacy.

Sample with
FPS

Find Collapsed
Points for Samples

Raw
Pointcloud

MLP

Input
Points

Duplicate

Upsampled
Points

Input
Features

Upsampled
Features

Multi-branch
MLPs

Upsampled
Features

Duplicate

Downsampling Layer Upsampling Block

Point
Transformer Upsampled

Offsets
Multi-branch

MLPs

Sample with
FPS

Find Collapsed
Points for Samples

Point
Transformer

Attention

Raw
Pointcloud

MLP

Downsampling Unit

Input
Points

Duplicate

Upsampled
Points

Input
Features

Upsampled
Features

Multi-branch
MLPs

Upsampled
Features

Duplicate

Upsampling Block

Upsampled
Offsets

Multi-branch
MLPs

Sample with
FPS

Find Collapsed
Points for Samples

Point
Transformer

Attention

MLP
Downsample
Factor = 2

Raw
Pointcloud

MLP

Downsampling Unit

Input
Points

Duplicate

Upsampled
Points

Input
Features

Upsampled
Features

Multi-branch
MLPs

Upsampled
Features

Duplicate

Upsampling Block

Upsampled
Offsets

Multi-branch
MLPs

Weights

Scales

Unit
Sphere

Candidate
Directions

Uniform
Sample

Multi-branch
MLPs

D
ire

ct
io

ns

Input
Points

D
up

lic
at

e

Offsets
Upsampled

Points

Duplicate

Input
Features

Upsampled
Features

Multi-branch
MLPs

Upsampled
Features

Duplicate

Sum

Multi-branch
MLPs

Upsampling Block

Sample with
FPS

Find Collapsed
Points for Samples

Point
Transformer

Attention

MLP
Downsample
Factor = 2

Raw
Pointcloud

MLP

Downsampling Unit

Weights

Scales

Unit
Sphere

Candidate
Directions

Uniform
Sample

Sub-point
Convolution

D
ire

ct
io

ns

Input
Points

D
up

lic
at

e

Offsets
Upsampled

Points

Duplicate

Input
Features

Upsampled
Features

Sub-point
Convolution

Upsampled
Features

Duplicate

Sum

Sub-point
Convolution

Upsampling Block

Sample with
FPS

Find Collapsed
Points for Samples

Point
Transformer

Attention

MLP
Downsample
Factor = 2

Raw
Pointcloud

MLP

Downsampling Unit

+ Dynamic Upsmapling Factor

Local Position Embedding

Density Embedding

Scale-adaptive Upsampling Block

Sub-point Convolution

Sample with
FPS

Find Collapsed
Points for Samples

Raw
Pointcloud

MLP

Input
Points

Duplicate

Upsampled
Points

Input
Features

Upsampled
Features

Multi-branch
MLPs

Upsampled
Features

Duplicate

Downsampling Layer Upsampling Block

Point
Transformer Upsampled

Offsets
Multi-branch

MLPs

Baseline

Figure 3. The detailed structures in ablation study (Table 2 of the main paper). Left: alternatives for the downsampling block in the
encoder; right: alternatives for the scale-adaptive upsampling block in the decoder. For dynamic upsampling factor, we first generate U
items and then select the first û points and features. While all these baselines do not have the refinement layer in the decoder, our full
model adds it based on the “+Sub-point Convolution” model.

Figure 4. More qualitative results on SemanticKITTI (the first two coloums) and ShapeNet (the last two coloums). From top to bottom:
Ground Truth, Ours, G-PCC [4], Draco [3], MPEG Anchor [7], Depeco [11] and PCGC [10]. We utilize the distance between each point
in decompressed point clouds and its nearest neighbor in ground truth as the error. And the Bpp and PSNR metrics are averaged by each
block of the full point clouds.

Figure 5. Qualitative results of normal compression. We apply Poisson reconstruction [5] to generate the mesh based on decompressed
points and normals. And the Bpp and PSNR metrics are averaged by each block of the full point clouds.

GT Ours G-PCC Draco MPEG Anchor Depoco PCGC

Bpp: 6.05 CD: 0.08 Bpp: 6.13 CD: 0.13 Bpp: 6.19 CD: 0.29 Bpp: 6.34 CD: 0.21 Bpp: 6.27 CD: 0.81 Bpp: 6.36 CD: 0.55

Figure 6. Qualitative results on the surface reconstruction downstream task, where CD represents the symmetric point-to-plane Chamfer
Distance [9] on each full model. It is clear that the mesh reconstructed from our decompressed point cloud contains better surface details
and more accurate geometry than others, especially on the face.

Figure 7. Qualitative results on the semantic segmentation downstream task, where IOU denotes the intersection-over-union metric on each
scan. It is shown that preserving local density not only recovers more accurate geometry, but also benefits downstream task.

Figure 8. Failure cases on extremely sparse point clouds.

References
[1] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay

Pushparaja. Compressai: a pytorch library and evalua-
tion platform for end-to-end compression research. arXiv
preprint arXiv:2011.03029, 2020. 1

[2] Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang,
and Raquel Urtasun. Muscle: Multi sweep compres-
sion of lidar using deep entropy models. arXiv preprint
arXiv:2011.07590, 2020. 1, 2

[3] Frank Galligan, Michael Hemmer, Ondrej Stava, Fan Zhang,
and Jamieson Brettle. Google/draco: a library for com-
pressing and decompressing 3d geometric meshes and point
clouds. https://github.com/google/draco,
2018. 5

[4] D Graziosi, O Nakagami, S Kuma, A Zaghetto, T Suzuki,
and A Tabatabai. An overview of ongoing point cloud com-
pression standardization activities: video-based (v-pcc) and
geometry-based (g-pcc). APSIPA Transactions on Signal and
Information Processing, 9, 2020. 5

[5] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Transactions on Graphics (ToG),
32(3):1–13, 2013. 3, 6

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[7] Rufael Mekuria, Kees Blom, and Pablo Cesar. Design, im-
plementation, and evaluation of a point cloud codec for tele-
immersive video. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 27(4):828–842, 2016. 5

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32:8026–
8037, 2019. 1

[9] Danhang Tang, Saurabh Singh, Philip A Chou, Christian
Hane, Mingsong Dou, Sean Fanello, Jonathan Taylor, Philip
Davidson, Onur G Guleryuz, Yinda Zhang, et al. Deep im-
plicit volume compression. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
pages 1293–1303, 2020. 6

[10] Jianqiang Wang, Hao Zhu, Haojie Liu, and Zhan Ma. Lossy
point cloud geometry compression via end-to-end learning.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 2021. 5

[11] Louis Wiesmann, Andres Milioto, Xieyuanli Chen, Cyrill
Stachniss, and Jens Behley. Deep compression for dense
point cloud maps. IEEE Robotics and Automation Letters,
6(2):2060–2067, 2021. 3, 5

[12] Jianxiong Xiao, Tian Fang, Peng Zhao, Maxime Lhuillier,
and Long Quan. Image-based street-side city modeling. In
ACM SIGGRAPH Asia 2009 papers, pages 1–12. 2009. 1

[13] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2790–2799, 2018. 2

[14] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16259–16268, 2021. 1, 2

[15] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:
A modern library for 3d data processing. arXiv preprint
arXiv:1801.09847, 2018. 2

https://github.com/google/draco

	. Implementation Details
	. Hyperparameters
	. Detailed Network Architecture
	. Reconstruction Metrics
	. Baselines in Ablation Study

	. Additional Ablation Studies
	. Downsampling Methods
	. Loss Functions

	. Additional Qualitative Results
	. Limitation Discussion

