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1. More Results

Model running time. We run our model on a sin-
gle NVIDIA GeForce RTX 2080Ti GPU. For each sup-
port view, it takes an average time of 72 ms for neural net-
work forwarding and 113 ms for pose alignment using the
Umeyama algorithm [7] with RANSAC [3].

Pose estimation with ground-truth segmentation. In
the main paper, we utilize relaxed ground-truth object
bounding boxes to crop out regions of interested objects
from the query scene for pose estimation. While LatentFu-
sion [5] utilizes stricter ground-truth segmentation to seg-
ment out objects, we report our results on LineMOD dataset
following their setting. Specifically, We use our model
trained only with ShapeNet6D without fine-tuning on the
real LineMOD dataset. As is shown in Table 6, our model
without any refinement already surpasses iterative refined
LatentFusion. Equipped with post-refinement by ICP, our
model obtains further improvement. Moreover, our model
(0.34 fps) is 18X faster than LantentFusion (0.018 fps) on a
RTX 2080Ti, when both use 16 support views.

Effect of the different number of support views. We
ablate the effect of the different number of support views in
Table 9. As is shown in the table, our algorithm gets better
performances when the number of support views increases.
Moreover, it only gains margin performance when we have
more than 16 views, which shows that our algorithm does
not need too many support views and can get good pose
results under the few-shot setting.

Details results on the LineMOD dataset. See Table 7.
Visualization of ShapeNet6D Example images in

ShapeNet6D are shown in Fig. 6.

2. Implementation Details

Grouping information of benchmark datasets. We
split the LineMOD dataset into three groups. Objects in
different groups have no intersection. During network fine-
tuning, we select two groups for training and one group
as novel objects for testing. The group information of the
LineMOD dataset is shown in Table 10. We split the YCB-
Video dataset into three groups in a similar way. Group
information of the YCB-Video dataset is shown in Table 8.

Support views selection. We select support views from
the training set since we do not have the real-world objects
in the LineMOD and YCB-Video datasets to capture the
support views. We select 16 support views using the far-
thest rotation sampling for each object to ensure that each
part of the object is visible. Specifically, we initialize the
set of selected views with a random view from the training
set for each object. We then add another object view with
the farthest rotation distance from views in the selected set.
We repeat this procedure until 16 views of the target object
are obtained. We define the distance between two rotations
as the Euclidean distance between two unit quaternions fol-
lowing [4, 6]. The formula is as:

D(q1, q2) = min{||q1 − q2||, ||q1 + q2||}. (5)

where || · || denotes the Euclidean norm and q1, q2 the two
unit quaternions.

Given the target object’s mask labels and pose parame-
ters in the selected support views, we crop out the object re-
gion and transform the object point cloud back to the object
coordinate system to serve as a reference frame to define the
6D object pose.

3. Fast Registration of Novel Objects
Given a novel object and an RGBD sensor with known

intrinsic parameters, we can quickly obtain support views
of the novel object in several ways. We provide some ex-
amples as follows:

Select from an RGBD video of the novel object. The
most simple way is to select support views from an RGBD
video of the target object. Specifically, we first place the
target object in the center of a clean plane and then capture
a video by slowly moving the camera around the object. We
use the first frame to define the object coordinate system.
Specifically, we mask out the object region by removing
the background plane with a plane detection algorithm [2]
or least-square-fitting of a plane on the scene point cloud.
We define the object coordinate system based on the object
point cloud of the first frame. Then, we calculate the pose
between the following frame and the first frame. Since the
pose difference between adjacent frames of a video is small
and the scene background is a clean plane, we can utilize



registration algorithms, i.e., ICP [1], Go-ICP [8] to calculate
the relative pose parameters between adjacent frames and
obtain the pose parameters between each frame and the first
frame. Finally, we can select support views by the farthest
rotation sampling algorithm as in Section 2.

To further improve the accuracy of relative pose param-
eters, we can put the object on a marker board (a plane with
several markers on it) and utilize markers to obtain more
accurate relative poses.

Collect with the robot arm. For robotic manipulation,
we have a robot arm with a camera in hand. We first cali-
brate the robot arm and the camera between an observed re-
gion with a marker board. We define several viewing points
with known pose parameters. We then place the novel tar-
get object to the observed region and utilize the robot arm
to move the camera to those predefined viewing points to
capture support views of the novel objects. The pose pa-
rameters of support views will be more accurate due to the
robustness of the robotic manipulation system.
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Figure 6. Example scene images in our ShapeNet6D dataset.

ape bench. camera can cat driller duck eggbox glue holep. iron lamp phone Mean

w/o ref. Ours 74.0 86.0 88.5 86.0 98.5 81.0 68.5 100.0 99.5 97.0 92.5 85.0 99.0 88.9

w/ ref. LatentFusion [5] 88.0 92.4 74.4 88.8 94.5 91.7 68.1 96.3 94.9 82.1 74.6 94.7 91.5 87.1
Ours+ICP 78.0 88.5 91.0 89.5 97.5 92.0 75.5 99.5 99.5 96.0 87.5 97.0 97.5 91.5

Table 6. Quantitative evaluation of different few-shot (16 shots) 6D pose estimation on the LineMOD dataset with ground truth segmenta-
tion. w/o ref.: without iterative refinement; w/ ref.: with iterative refinement. Symmetry objects are in bold.

Group 0 Group 1 Group 2
ape benchvise camera can cat mean driller duck eggbox glue mean holepuncher iron lamp phone mean
70.5 82.5 72.5 46.5 78.0 70.0 87.0 60.5 100.0 99.5 86.8 94.0 88.0 94.5 97.0 83.4

Table 7. Detailed results of our method on the LineMOD dataset. Symmetry objects are in bold.

Group Objects

0 002 master chef can, 003 cracker box, 004 sugar box, 005 tomato soup can, 006 mustard bottle, 007 tuna fish can, 008 pudding box
1 009 gelatin box, 010 potted meat can, 011 banana, 019 pitcher base, 021 bleach cleanser, 024 bowl, 025 mug
2 035 power drill, 036 wood block, 037 scissors, 040 large marker, 051 large clamp, 052 extra large clamp, 061 foam brick

Table 8. Group information of the YCB-Video dataset.

# Views 1 4 8 16 32
ADDS AUC↑ 79.6 87.3 87.9 88.4 88.6

Table 9. Effect of number of support views on the YCB-Video. The
mean ADD-S AUC results are reported.

Group Objects

0 ape, benchvise, camera, can, cat
1 driller, duck, eggbox, glue
2 holepuncher, iron, lamp, phone

Table 10. Group information of the LineMOD dataset.


