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A. Additional Results
To support the representative nature of the results shown

in the main paper, we sample hundreds of images at random
to evaluate both the quality of our generator as well as the
keypoint detector applied to real images. Figures 8, 9, 10,
and 11 show the randomly generated images along with the
corresponding points and masks. Figures 12, 13, 14, and
15 show the detected masks on real test images sampled at
random.

B. Implementation Details
B.1. Integrated Network Architecture

We provide a complete overview of the network archi-
tecture in Figure 1. It combines the individual modules in-
troduced in the main paper.

B.2. SPADE ResBlock

Figure 2 (top) illustrates the SPADE ResBlock [13]. To
be self-contained, we summarize the implementation of
SPADE here. SPADE takes two feature maps as input. We
denote the two feature maps as Finput ∈ RDinput emb×H×W

and Fstyle ∈ RDstyle emb×H×W . We first use BatchNorm [6] to
normalize Finput followed by two convolutions to map Fstyle
to the new mean β ∈ RDinput emb×H×W and new standard
deviation γ ∈ RDinput emb×H×W for the normalized Finput.
Although we use BatchNorm to normalize Finput in batch
and channel dimension, we apply the generated β and γ to
denormalize every individual element.

B.3. AdaIN ConvBlock

Figure 2 (bottom) illustrates the AdaIN ConvBlock [5].
AdaIN takes a feature map and a style vector as input. We
denote the feature map as Finput ∈ RDinput emb×H×W and
the style vector as vstyle ∈ RDstyle emb . Unlike the origi-
nal paper [5], which uses InstanceNorm [16], we found it
beneficial in our case to use BatchNorm [6] to normalize
Finput. We use two fully connected layers to map vstyle to
the new mean β ∈ RDinput emb and new standard deviation

γ ∈ RDinput emb for the normalized Finput. As for the SPADE
block, we use BatchNorm to normalize Finput in batch and
channel dimension. For denormalization, β and γ are gen-
erated for each channel and broadcast to the spatial size of
the feature map.

B.4. Hyperparameters

We use the Adam optimizer [11] with a learning rate of
0.0001 for the generator G and 0.0004 for the discrimina-
tor D, both with β1 = 0.5, β2 = 0.9. We set the gradi-
ent penalty coefficient λgp = 10 for the discriminator. In
every experiment, we update the generator 30,000 times.
The learning rate for DeepLab is 0.0003, with β1 = 0.9,
β2 = 0.999. DeepLab is trained for 10,000 iterations. The
feature map resolutions are (322, 322, 642, 1282), respec-
tively. We set nper = 4 for all experiments. The penalty
coefficients for each experiment is listed in Table 1. For
Taichi, we set the vertical position of the background to be
always in the center and only sample the horizontal position
uniformly.

CelebA Taichi CUB Flower
λcon 10 30 10 30
λarea 1 1 1 1

Table 1. Penalty coefficients used in the main paper.

C. Image Quality

To quantify image quality, we report the FID score [15]
for the models used in the main paper: 21.42 for CelebA-in-
the-wild, 116.62 for Taichi, 38.74 for CUB, and 38.41 for
Flowers. Note that FID numbers are not comparable across
datasets. The FID is calculated by 50,000 generated images
and the corresponding original dataset as established by [9].
Note that image quality is not our primary goal but it is still
important since it influences how well the learned detector
will generalize. The better the quality, the smaller the do-
main gap between generated and real images.
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Figure 1. Integrated network architecture for better understanding of our data flow.
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Figure 2. SPADE ResBlock. (top) and AdaIN ConvBlock (bot-
tom).

D. Embedding Visualization

We generated 320 images for each dataset and provide
the T-SNE visualization of their embedding vectors in Fig-
ure 3, including the background as a part. The embeddings
from different parts are well separated in all datasets, in-

dicating that our model learns unique embeddings for each
part. Since overlapping part embeddings would mean that
the same image features could be generated by multiple
parts, the separation explains the good consistency of parts
across images.

CelebA-in-the-wild Taichi CUB Flower

Figure 3. Embedding visualization.

E. Theoretical Analysis

In the following, we explain in detail how and why the
proposed GAN architecture provides translation equivari-
ance. On top of the translation equivariance of convo-
lutions, we address equivariances in the point- and part-
conditioned image generation.



Intuition. Consider a greyscale image, with a single point
on it. Assume the image gets darker to the point. How
should the image change if we move the point one pixel
step to the right? We illustrate it in Figure 4 (Left). The
left part of the image w.r.t. the point gets brighter and the
right part gets darker. More specifically, if the point moves
one pixel to the right, the pixels on the grid take the value of
their left neighbor. The continuous case (1D for simplicity)
is shown in Figure 4 (Middle). We assume that the point x
controls the translation of the function f . If we move the
x to x + ∆t, the function f is also shifted by ∆t. Then
for each fixed position p, the value changes from f(p) to
f(p − ∆t). We desire a network architecture that fulfills
this equivariance in the vicinity of each point.

Move

Right

(a) (b)

Figure 4. Intuition. (a) We move the points to the right by one
pixel. The left part of the point (red box) becomes brighter and
the right part of the point (blue box) becomes darker. (b) Contin-
uous 1D case. (c) Rotation of parts can be achieved by translating
points.

Formulation. Formally, let I ∈ RH×W denote a feature
map (or an image), x ∈ [−1, 1] × [−1, 1] denote the point
location, and p ∈ [−1, 1]×[−1, 1] denote the pixel location.
We have

I(p−∆t,x) = I(p,x+∆t). (1)

If we divide both sides by ∆t (both axis independently),
and let ∆t → 0, we get the equation for the motion of a
single point

−∂I(p,x)

∂p
=

∂I(p,x)

∂x
. (2)

This equation is the first integral of a homogeneous linear
partial differential equation [17, 18]. Its solution is in the
form of I(p − x), where I can be any function. In other
words, whenever p (or x) shows up, it must be in a combi-
nation with x (or p) as p− x or x− p.

If there exist multiple points, each pixel may be influ-
enced by multiple points. Assuming K points x1, ...,xK ∈
[0, 1]2 gives

Ik(p−∆t,x1, ...,xK) = Ik(p,x1, ...,xk +∆t, ...,xK),
(3)

where k = 1, ...,K.
We assume additivity of Ik, which models the additivity

of the generated feature maps in our convolutional generator

well,

I =

K∑
k=1

Ik, (4)

and write

I(p−∆t,x1, ...,xK) =

K∑
k=1

Ik(p,x1, ...,xk+∆t, ...,xK).

(5)
As before, we divide both sides by ∆t (both axis indepen-
dently), and let ∆t → 0. We get

∂I(p,X)

∂p
= −

K∑
k=1

∂Ik(p,X)

∂xk
. (6)

where X = {x1, ...,xK} for simplicity. Similarly, the solu-
tion to this equation is in the form of I(p−x1, ...,p−xk).
Therefore, in theory, if we build a neural network that takes
the difference between the points and the pixels as input,
i.e., (p−x1, ...,p−xk), this equation is automatically sat-
isfied. Hence, unlike recent trends of adding absolute co-
ordinates to networks [2, 3, 7, 19], we need to remove the
absolute coordinate and point information from the model.

Background Handling. We generate foreground and
background independently as foreground and background
are not additive. The background exists on all pixels of the
image, just with parts occluded by the foreground. Thus the
movement of the background will not affect the foreground
pixels. Mathematically, if only a non-empty subset of the K
points influence the pixel p, Equation 6 still holds because
∂I(p,x1,...,xK)

∂xk
= 0 if p is not influenced by the point xk.

However, if p belongs to the background (no point affects
the pixel p), the RHS becomes zero while the LHS does not
(unless the background has only a single color). Therefore,
we need to separate foreground and background and blend
them at the end, to be able to assume additivity only on the
foreground where it is meaningful.

Convolution. We use convolutions in our network since
they are translation equivariant. In formulation, a neighbor
of p has value I(p−x1+∆p, ...,p−xk+∆p) where ∆p is
a step to the neighbor. Note that I(p−x1+∆p, ...,p−xk+
∆p) itself can be written as a function of (p − x1, ...,p −
xK), which makes our desired Equation 6 hold.

Why to use a GAN? Unlike most previous work which
uses auto-encoders, we first use a GAN to generate points,
masks, and images, and train a segmentation network to ob-
tain segments. A core reason for us is that GANs can ef-
fectively prevent leaking absolute position [8]. As pointed
out by [1,7,10,19], a convolution (kernel size larger than 1)



Method CelebA ↓ CUB ↑ Flowers ↑ Taichi (MAE) ↓ Taichi (IoU) ↑
fixed σ 26.32% 0.467 0.697 657.61 0.7452
original 6.18% 0.629 0.739 417.17 0.8538

Table 2. Quantitative Ablation Tests on Number of Parts. The
metric for each dataset in this table follows the main paper.

with zero padding implicitly encodes absolute grid position.
The more layers and downsampling layers, the larger is the
region around the boundary that is affected by leaking abso-
lute position [1]. However, if we were to remove the zero-
padding, using only valid convolution, encoder will perform
much worse at the boundary of images [12]. GANs, how-
ever, usually do not have downsampling but multiple up-
sampling layers. If we maintain a fixed margin around the
feature map and crop after each upsampling [8], we can ef-
fectively prevent leaking absolute position and work with
cropped and uncropped datasets. Moreover, autoencoders
require to learn the encoder and decoder together, which
implies a larger memory footprint and they generally lack
behind in image generation quality.

F. Additional Ablation Tests

F.1. Replacing the GAN with an Auto-encoder

We tried two kinds of auto-encoders to replace our Point
Generator (Level 1 of the hierarchy) and Mask Genera-
tor (Level 2). In the first one, we train a U-Net [14] to
obtain points {x1

k, ...x
nper

k }Kk=1, and two separate ResNet-
18 [4] to extract part appearance vector wdynamic, and back-
ground appearance vector wbg along with background po-
sition ubg pos, to feed into our Mask Generator that is left
unchanged. In the second version, we directly use DeepLab
V3 to generate masks M, and then feed it to our Foreground
and Background generator. We use the mean squared image
reconstruction error to train this auto-encoder. We observe
that all of the tested auto-encoders give trivial solutions, as
shown in Figure 6. Hence, we decided to use a pure GAN
setup.

F.2. Using Fixed Standard Deviation

Instead of estimating from points, we directly set a fixed
standard deviation σ for each part. The fixed standard de-
viation is calculated by the average of the σk from our pre-
trained model. We sample 5000 images. The average for all
datasets are 0.00725 (CelebA-in-the-wild), 0.010 (Taichi),
0.0016 (CUB), and 0.0065 (Flower). The quantitative re-
sults are shown in Table 2 and the qualitative results are
shown in Figure 5. The results show that fixing σ harms the
performance severely. It is important to have various σ for
each part and each object.

nper CelebA ↓ CUB ↑ Flowers ↑ Taichi (MAE) ↓ Taichi (IoU) ↑
3 6.08% 0.644 0.696 594.73 0.5863
4 6.18% 0.629 0.739 417.17 0.8538
6 8.84% 0.682 0.715 434.47 0.8336
8 13.02% 0.641 0.744 467.69 0.7792

Table 3. Ablation Tests on Number of Points per Part. The
number of parts and the metric for each dataset in this table follow
the main paper. We use nper = 4 in the main paper.

Method CelebA ↓ CUB ↑ Flowers ↑ Taichi (MAE) ↓ Taichi (IoU) ↑
K=1 56.23% 0.631 0.570 748.30 0.7895
K=4 12.26% 0.607 0.767 652.87 0.8176
K=8 6.18% 0.629 0.739 420.95 0.8481
K=12 6.17% 0.663 0.708 450.51 0.7939
K=16 6.71% 0.692 0.712 441.04 0.7475
K=32 7.00% 0.380 0.530 1605.84 0.1758

Table 4. Quantitative Ablation Tests on Number of Parts. The
metric for each dataset in this table follows the main paper.

F.3. Number of Points per Part

We test on the influence of the number of points per part
nper. We found that the network always collapses if nper ≤
2, and collapses occasionally if nper = 3. Table 3 shows
that the optimal nper differs among different datasets. We
choose nper = 4 in our main paper for consistency.

F.4. Number of Parts

We test how the number of parts affects segmentation.
Although the Area Loss is vital, its coefficient is not sen-
sitive to the numbers of parts K. Thus for simplicity, we
set λarea = 1 as in the main paper. However, we found that
small number of parts with large Concentration Loss coeffi-
cient causes the trivial or sub-optimal solutions. Therefore,
we use the formula

λcon(K) = CconK (7)

The constant Ccon varies between datasets. In our experi-
ments, we set 1.25 for Celeba-in-the-wild, 3 for Taichi, 1.25
for CUB, and 3.75 for Flower.

We show quantitative results in Table 4 and qualitative
results in Figure 7. We found our model starts to degener-
ate when K = 16. Even though the IoU on CUB is higher,
the mask degenerates, which is still a state-of-the-art fore-
ground/background segmentation model but not a good part
model. If K = 32, the model fails to distinguish the fore-
ground from the background.
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Figure 7. Ablation Test on the number of parts. Seven examples are tested for each dataset.



Figure 8. 90 generated samples from CelebA-in-the-wild, with the generated image-points-masks pairs overlaid.



Figure 9. 90 generated samples from Taichi, with image-points-masks pairs overlaid.



Figure 10. 90 generated samples from CUB, with image-points-masks pairs overlaid.



Figure 11. 90 generated samples from Flowers, with image-points-masks pairs overlaid.



Figure 12. 120 samples from CelebA-in-the-wild, with detected masks overlaid.



Figure 13. 120 samples from Taichi, with detected masks overlaid.



Figure 14. 120 samples from CUB, with detected masks overlaid.



Figure 15. 120 samples from Flower, with detected masks overlaid.
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