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Abstract

In this supplementary file, we first give the detailed descriptions of our GCFSR in Section 1. Secondly, we provide
the quantitative results to demonstrate the effectiveness of our proposed style modulation module (Section 2) and feature
modulation module (Section 3). Then, we show more qualitative comparison with state-of-the-art methods (Section 4) and
qualitative results of modulation on generative strength (Section 5). In Section 6, more visualization on feature modulation
for different levels are illustrated. In the end, we present the qualitative results of GCFSRadv in Section 7.

1. More detailed descriptions on GCFSR.
As for the architecture of GCFSR, the encoder contains six 3×3 convolutional layers with stride 2, and each convolutional

layer is followed by a leakyrelu activation layer. These strided convolutional layers gradually downsample the feature maps
from resolution 10242 to resolution 162. Besides, the encoder uses another two strided convolutional layers and one fully
connected layer to generate the latent codes w. Then, the generator takes the topmost encoded 16× 16 feature maps as well
as the latent codes to generate realistic facial details by style modulation. The number of parameters in GCFSR is 66.69M.

2. The effectiveness of style modulation module in quantitative evaluation.
In this section, we provide the quantitative comparison of GCFSR with and w/o style modulation module for 16×, 32×

and 64× SR. In general, the style modulation module improves the overall performance in most metrics.

Table 1. Quantitative comparison of GCFSR with and w/o style modulation module on CelebA-HQ for 16×, 32× and 64× SR. Bolded
texts represent the best performance.

style
modulation

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ similarity ↑

16× w 27.17 0.7100 0.2604 30.48 0.9631
w/o 27.16 0.7081 0.2713 33.18 0.9602

32× w 24.95 0.6748 0.3061 43.34 0.7911
w/o 24.94 0.6735 0.3207 44.97 0.7887

64× w 22.39 0.6315 0.3663 57.15 0.6620
w/o 22.42 0.6336 0.3750 60.03 0.6463
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3. The effectiveness of feature modulation in quantitative evaluation.
In this section, we aim to demonstrate the effectiveness of our proposed feature modulation. Specifically, we remove the

feature modulation from GCFSR and use the remaining network architecture (namely as GFSR) to train three single models
for three upscaling factors (16×, 32×, 64×), separately. The quantitative results are presented in Table 2 (the results of
GLEAN are also provided as reference). As can be seen, in contrast with GCFSR, the single model GFSR achieves slightly
better performance on 16× SR, performs comparably on 32× SR, but obtains worse results on 64× SR. Nevertheless, the
difference between GCFSR and GFSR in performance is minor (see Figure 2), indicating the superiority of our proposed
Feature Modulation. On the other hand, our GFSR outperforms GLEAN for all upscaling factors, which again demonstrates
the effectiveness of our proposed network architecture and the end-to-end training strategy.

Table 2. Comparison of GCFSR, GFSR (our single version), and GLEAN on CelebA-HQ for 16×, 32×, and 64× SR. GFSR and GLEAN
both use three models for three different SR tasks. Red and blue indicate the best and the second best performance. Similarity. represents
Cosine similarity of ArcFace Embeddings. The absolute difference between GCFSR and GFSR is given.

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ similarity ↑

16×

GLEAN [1] 26.88 0.6953 0.2693 29.99 0.9682
GCFSR 27.17 0.7100 0.2604 30.48 0.9631
GFSR 27.16 0.7085 0.2560 29.57 0.9747

diff(abs) 0.01 0.0015 0.0044 0.91 0.0116

32×

GLEAN 24.34 0.6534 0.3257 46.57 0.7750
GCFSR 24.95 0.6748 0.3061 43.34 0.7911
GFSR 24.89 0.6761 0.3059 45.08 0.7979

diff(abs) 0.06 0.0013 0.0002 1.74 0.0068

64×

GLEAN 21.38 0.6016 0.4109 62.93 0.6118
GCFSR 22.39 0.6315 0.3663 57.15 0.6620
GFSR 22.21 0.6377 0.3689 59.79 0.6261

diff(abs) 0.18 0.0062 0.0026 2.64 0.0359

4. More qualitative comparison with state-of-the-art methods.
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Figure 1. Qualitative comparisons of GLEAN [1], GPEN [7], GFPGAN [5], and GCFSR (ours) on CelebA-HQ [3] for 16× SR. The GT
image (Right) has a resolution of 10242. Zoom in for best view.
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Figure 2. Qualitative comparisons of GLEAN [1], GPEN [7], GFPGAN [5], and GCFSR (ours) on CelebA-HQ [3] for 32× SR. The GT
image (Right) has a resolution of 10242. Zoom in for best view.
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Figure 3. Qualitative comparisons of GLEAN [1], GPEN [7], GFPGAN [5], and GCFSR (ours) on CelebA-HQ [3] for 64× SR. The GT
image (Right) has a resolution of 10242. Zoom in for best view.



5. More qualitative results of modulation on generative strength.
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Figure 4. The results obtained by modulation on the generative strength. We change the conditional upscaling factor s from s = 4 to
s = 64 continuously, and find satisfactory results (e.g., results denoted by yellow rectangles) between two ends. Zoom in for best view.



6. More visualization on feature modulation.
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Figure 5. The visualization on feature modulation. The histograms of scaling vectors σ16
enc, σ16

gen, σ256
enc, and σ256

gen for different conditional
upscaling factors are presented.

Here we provide the histograms of scaling vectors that correspond to level 16 and level 256: σ16
enc, σ16

gen, σ256
enc, and σ256

gen,
which are illustrated in Figure 5. For σ16

enc and σ256
enc, their values are approaching 0 as the conditional upscaling factor s

increases. Reversely, the values of σ16
gen and σ256

gen are approaching 1. This indicates that higher conditional upscaling factor
corresponds to stronger generative effect, since the features from the encoder are weakened while the features from the
decoder are strengthened.



7. Qualitative results of GCFSRadv
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Figure 6. Visual comparisons of GCFSRadv (trained with only one adversarial loss) and other blind face restoration methods (PSFRGAN
[2], DFDNet [4], HiFaceGAN [6], GFPGAN [5], GPEN [7]) on 4× and 8× SR, evaluated on CelebA-HQ. The GT image has a resolution
of 512× 512. Zoom in for best view.
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