
Outline

In this supplementary file, we first provide more results
and discussions in Sec. A: results of MobileNetV2 as stu-
dent in Sec. A.1, detailed proof of Theorem 1 in Sec.
A.2, comparison of previous feature-based KD methods in
Sec. A.3, an example of local transformations breaking
the original relative magnitude in Sec. A.4, and discus-
sion on computation cost in Sec. A.5. Further, we offer
the elaborated implementation details for the KDEP setups
and downstream task setups in Sec. B.

A. More Results
A.1. Main Results: MobileNetV2 as Student.

Due to the length limit of the main paper, we show the
results of MobileNetV2 as student in Table S.1. Similar
results have been achieved with MobileNetV2 (MNV2) as
student compared to R18 as student, which shows the gen-
eralization of the proposed KDEP method.

A.2. Detailed Proof of Theorem 1

Given two independent random variables with normal
distribution T ∼ N(0, σ2) and S ∼ N(0, σ2

s), then
F (σ) = E[(T − S)2] is monotonically increasing (σ > 0).

Proof 1 (Detailed version)

F (σ) = E[(T − S)2]

=

∫ +∞

−∞

∫ +∞

−∞
(t− s)2 · P (t, s)dtds

=

∫ +∞

−∞

∫ +∞

−∞
(t− s)2 · P (t) · P (s)dtds

=

∫ +∞

−∞

∫ +∞

−∞
(t− s)2 · 1

2πσσs
e

−s2

2σ2
s e

−t2

2σ2 dtds

=
1√
2πσ

∫ +∞

−∞
e

−t2

2σ2 (

∫ +∞

−∞

1√
2πσs

(t− s)2 · e
−s2

2σ2
s ds)dt

=
1√
2πσ

∫ +∞

−∞
e

−t2

2σ2 (t2 + σ2
s)dt = σ2 + σ2

s

dF (σ)

dσ
= 2σ > 0 ⇒ monotonically increasing

A.3. Compare other feature-based KD methods.

Here, we show the KDEP results of some traditional
feature-based KD methods that are developed for distilling
knowledge to improve student’s performance for a specific
task instead of its transferability. Also, these methods all
require task label loss which violates our setting of an un-
labeled dataset. Hence, we don’t include them in our pa-
per to compare for fairness. As shown in Table S.2, pre-
vious feature-based KD methods largely rely on logit KD

Method Data Epoch
Time
(/h)

Classification (Acc %)
Caltech DTD CUB CIFAR Avg

rand. init. - - - 51.77 57.34 60.44 76.66 61.55
SP. b. 10% 90 4.2 66.58 65.72 71.09 78.60 70.50
KDEP 10% 90 4.3 74.34 71.84 74.24 81.06 75.37
SP. b. 100% 9 4.2 68.09 67.514 73.33 78.95 71.97
KDEP 100% 9 4.3 74.48 72.51 74.76 81.47 75.81
SP. b. 10% 180 8.4 69.23 67.33 73.62 79.50 72.42
KDEP 10% 180 8.6 75.56 73.29 75.28 81.98 76.53
SP. b. 100% 18 8.4 71.83 69.60 74.64 80.13 74.05
KDEP 100% 18 8.6 76.06 73.14 76.00 82.15 76.83
SP. b. 10% 900 42 69.93 67.59 72.74 79.83 72.52
KDEP 10% 900 43 77.66 73.05 76.06 82.53 77.32
SP. o. 100% 90 42 76.43 72.26 76.34 81.91 76.74
KDEP 100% 90 43 78.57 73.94 76.40 82.73 77.91

Method Data Epoch
Time
(/h)

Segmentation (mIoU %)
Cityscapes VOC12 ADE20K Avg

rand. init. - - - 40.33 39.23 23.07 34.21
SP. b. 10% 90 4.2 60.92 62.60 29.17 50.89
KDEP 10% 90 4.3 63.50 67.28 31.46 54.08
SP. b. 100% 9 4.2 61.42 64.31 29.61 51.78
KDEP 100% 9 4.3 63.53 68.17 32.00 54.57
SP. b. 10% 180 8.4 61.68 64.65 29.95 52.09
KDEP 10% 180 8.6 64.32 68.73 31.92 54.99
SP. b. 100% 18 8.4 62.23 65.82 29.55 52.53
KDEP 100% 18 8.6 64.23 69.32 32.41 55.32
SP. b. 10% 900 42 61.87 64.95 31.07 52.63
KDEP 10% 900 43 63.89 70.45 32.23 55.52
SP. o. 100% 90 42 64.16 69.48 31.69 55.11
KDEP 100% 90 43 64.72 71.07 32.39 56.06

Method Data Epoch
Time
(/h)

Detection
VOC0712 COCO

AP AP50 AP75 AP AP50 AP75
rand. init. - - - 31.4 56.7 30.2 25.8 43.6 26.9

SP. b. 10% 90 4.2 42.5 71.3 44.0 27.7 46.4 29.0
KDEP 10% 90 4.3 46.7 75.7 49.0 29.7 48.8 31.2
SP. b. 100% 9 4.2 43.0 71.9 44.0 27.9 46.4 29.0
KDEP 100% 9 4.3 47.1 76.3 49.6 30.2 49.8 31.9
SP. b. 10% 180 8.4 43.0 71.4 45.0 27.6 46.2 29.0
KDEP 10% 180 8.6 47.0 75.9 49.9 30.0 49.4 31.5
SP. b. 100% 18 8.4 43.7 72.6 45.4 27.9 46.6 29.3
KDEP 100% 18 8.6 47.2 76.3 50.0 30.4 50.1 32.0
SP. b. 10% 900 42 44.0 73.1 45.6 28.7 47.9 30.1
KDEP 10% 900 43 47.0 76.0 49.8 29.7 49.2 31.4
SP. o. 100% 90 42 45.5 75.0 47.6 29.6 49.1 31.3
KDEP 100% 90 43 46.8 76.5 49.4 30.0 49.6 31.4

Table S.1. KDEP vs. SP, R50 → MNV2, fine-tuned on various
tasks. KDEP refers to our SVD+PTS method.

Method SP FitNet [11]AT [7]NST [6]AB [5]Heo [4] Ours
Acc 71.05 72.43 67.84 67.05 71.66 72.98 75.74

Table S.2. Compare feature-based KD with 10% data and 90
epochs. Acc: averaged top-1 accuracy over 4 classification tasks.

loss and task label loss, and perform inferiorly with only
feature-level clues.

A.4. Example: Breaking Relative Magnitude.

In Sec. 3.3 of our paper, we argue that Scale Normaliza-
tion (SN) and Std Matching (SM) are local transformations



that transform channel-wisely, which may break the origi-
nal relative magnitude between channels. Here, we provide
a toy example as an illustration.

For instance, we have a three channel penultimate layer
with target Std=[4, 3, 2] and after SVD Std=[50, 5, 1]. For
a feature after SVD that is [10, 2, 2], with SN we have [0.2,
0.4, 2], and with SM we have [0.8, 1.2, 4], both losing the
original relative magnitude.

A.5. Computation cost.

In most of our experimental results, we provide the train-
ing time of KDEP and supervised pre-training, where only
unnoticeable extra training time is added. Moreover, the
GPU memory usage during KDEP is also similar to super-
vised pre-training since we do not require gradients for the
teacher. Yet, our teacher model is R50, and additional com-
putation costs may increase when using larger teachers that
inquires more inference time and GPU memory. Still, the
pre-training time could be largely reduced compared with
supervised pre-training.

B. Implementation Details
We implement our method using the PyTorch [9] frame-

work and use SGD with momentum of 0.9 for all our ex-
periments. All experiments are conducted using four 32G
V100 GPUs.

B.1. KDEP Setups

For the KDEP procedure, we use an initial learning rate
(lr) of 0.3 for R50→R18 and 0.1 for R50→MNv2. Batch
size is set to 512. For data augmentation, we use Random-
ResizedCrop(224) and RandomHorizontalFlip. In order to
reduce the burden of hyper-parameter tuning (e.g. weight
decay), we multiply our feature-based loss (refer to Eq. 1 in
our paper) by a loss weight w, which matches the feature-
based loss to the loss scale of supervised pretraining. For re-
production, we provide the loss weight of different teacher-
student pairs in Table S.3.

Teacher→Student w

Standard SP R50→R18 20
MS R50→R18 3
SWSL R50→R18 1
MEAL V2 R50→R18 1
Swin-B→R18 3
MS R50→MNV2 3

Table S.3. Value of loss weight w for different T-S pairs.

For the 10% ImageNet data setting, we sample 10% im-
ages from each class of the original 1000 class in ImageNet-
1K. We set the training epochs to 90 or 180, and drop the
lr by a factor of 10 at 1/3 and 2/3 of total epochs. When
using all of ImageNet data, we train for 9 or 18 epochs to

verify fast convergence, and for 90 epochs to further boost
performance, where 90 epochs with all ImageNet data is
the standard supervised pretraining schedule [12]. We use
weight decay ∈ {1e-4, 4e-4, 5e-4} according to the length
of the training schedule, shown in Table S.4.

Data Epoch Weight decay
10% 90 5e-4
10% 180 4e-4
100% 9 5e-4
100% 18 4e-4
100% 90 1e-4

Table S.4. Weight decay for different KDEP training scedules.

B.2. Downstream Task Setups

For all downstream tasks, we use the same schedule and
evaluation protocols for all models for a fair comparison.

For image classification, we initialize the backbone with
the distilled weights and add a linear classifier with random
initialization. We train the network for 150 epochs with
batch size of 64, weight decay of 5e-4, an initial learning
rate ∈ {0.01, 0.001} which drops by a factor of 10 at 1/3
and 2/3 of total epochs. Again, we use RandomResized-
Crop(224) and RandomHorizontalFlip for data augmenta-
tion.

For semantic segmentation, we also initialize the back-
bone with the distilled weights, and add a PSP module [13]
and a segmentation head after the backbone. We use batch
size of 16, an initial learning rate of 0.01, weight decay of
1e-4, crop size of 512, and deploy an polynomial learning
rate annealing procedure [1]. For data augmentation, we
use random scaling, random horizontal flipping, random ro-
tation, and random Gaussian blur. The number of epochs is
50, 100, 200 for VOC12, ADE20K, and Cityscapes, respec-
tively, following previous standard [13].

For object detection, we experiment with the Faster R-
CNN [10] detector and backbones are also initialized by the
distilled weights. Unless noted, all the setups follow the
evaluation protocols in MOCO [2]. For ResNet18, we use a
backbone of R18-C4 (similar to R50-C4 [3]) for both VOC
and COCO experiments. For MobileNetV2, we equip it
with a FPN [8] backbone. 1x schedule is applied for COCO.

B.3. Parametric/Non-parametric Methods.

In our experiments, we experiment with three 1×1 conv
variants for parametric methods: Post-ReLU, Pre-ReLU
and the one in [4]. Specifically, we add a 1×1 convolutional
layer and a Batch Normalization layer either after (Post-
ReLU) or before (Pre-ReLU) the ReLU activation function.
We also experiment with the Pre-ReLU 1×1 conv method
equipped with Margin ReLU of teacher’s feature and Partial
L2 loss function as in [4].



For non-parametric methods, we explore channel selec-
tion (CS.var, CS.rand), interpolation, and SVD. For channel
selection methods, we experiment with two methods: se-
lecting the top-Ds channels with largest variances (CS.var)
or random selecting Ds channels (CS.rand). For interpola-
tion method, we use the default nearest-neighbor interpo-
lation in PyTorch [9]. For SVD, we calculate the singu-
lar vectors offline and use the top-Ds principal components
to transform the teacher’s features during the online KDEP
process.

References
[1] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. TPAMI, 2017.

[2] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020.

[3] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017.

[4] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, No-
jun Kwak, and Jin Young Choi. A comprehensive overhaul
of feature distillation. In ICCV, 2019.

[5] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young
Choi. Knowledge transfer via distillation of activation
boundaries formed by hidden neurons. In AAAI, 2019.

[6] Zehao Huang and Naiyan Wang. Like what you
like: Knowledge distill via neuron selectivity transfer.
arXiv:1707.01219, 2017.

[7] Nikos Komodakis and Sergey Zagoruyko. Paying more at-
tention to attention: improving the performance of convolu-
tional neural networks via attention transfer. In ICLR, 2017.

[8] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. NIPS,
2019.

[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. NIPS, 2015.

[11] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv:1412.6550, 2014.

[12] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish
Kapoor, and Aleksander Madry. Do adversarially robust im-
agenet models transfer better? arXiv:2007.08489, 2020.

[13] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, 2017.


