
Broader impacts. The proposed method predicts content
based on learned statistics of the training dataset and as such
will reflect biases in those data, including ones with nega-
tive societal impacts. The model may generate inexistent
content. These issues warrant further research and consid-
eration when building upon this work to generate images.

A. Implementation Details
A.1. ImageNet Experiments

ViT architecture. We follow the standard ViT architecture
[16]. It has a stack of Transformer blocks [57], and each
block consists of a multi-head self-attention block and an
MLP block, both having LayerNorm (LN) [1]. The encoder
ends with LN. As the MAE encoder and decoder have dif-
ferent width, we adopt a linear projection layer after the
encoder to match it. Our MAE adds positional embeddings
[57] (the sine-cosine version) to both the encoder and de-
coder inputs. Our MAE does not use relative position or
layer scaling (which are used in the code of [2]).

We extract features from the encoder output for fine-
tuning and linear probing. As ViT has a class token [16],
to adapt to this design, in our MAE pre-training we append
an auxiliary dummy token to the encoder input. This token
will be treated as the class token for training the classifier in
linear probing and fine-tuning. Our MAE works similarly
well without this token (with average pooling).

Pre-training. The default setting is in Table 8. We do
not use color jittering, drop path, or gradient clip. We use
xavier uniform [18] to initialize all Transformer blocks, fol-
lowing ViT’s official code [16]. We use the linear lr scaling
rule [20]: lr = base lr×batchsize / 256.

End-to-end fine-tuning. Our fine-tuning follows common
practice of supervised ViT training. The default setting is in
Table 9. We use layer-wise lr decay [10] following [2].

Linear probing. Our linear classifier training follows [9].
See Table 10. We observe that linear probing requires a very
different recipe than end-to-end fine-tuning. In particular,
regularization is in general harmful for linear probing. Fol-
lowing [9], we disable many common regularization strate-
gies: we do not use mixup [69], cutmix [68], drop path [30],
or color jittering, and we set weight decay as zero.

It is a common practice to normalize the classifier input
when training a classical linear classifier (e.g., SVM [11]).
Similarly, it is beneficial to normalize the pre-trained fea-
tures when training the linear probing classifier. Follow-
ing [15], we adopt an extra BatchNorm layer [31] without
affine transformation (affine=False). This layer is ap-
plied on the pre-trained features produced by the encoder,
and is before the linear classifier. We note that the layer
does not break the linear property, and it can be absorbed
into the linear classifier after training: it is essentially a re-

config value
optimizer AdamW [39]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 [6]
batch size 4096
learning rate schedule cosine decay [38]
warmup epochs [20] 40
augmentation RandomResizedCrop

Table 8. Pre-training setting.

config value
optimizer AdamW
base learning rate 1e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [10, 2] 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 100 (B), 50 (L/H)
augmentation RandAug (9, 0.5) [12]
label smoothing [52] 0.1
mixup [69] 0.8
cutmix [68] 1.0
drop path [30] 0.1 (B/L) 0.2 (H)

Table 9. End-to-end fine-tuning setting.

config value
optimizer LARS [66]
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 16384
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 10. Linear probing setting. We use LARS with a large
batch for faster training; SGD works similarly with a 4096 batch.

parameterized linear classifier.3 Introducing this layer helps
calibrate the feature magnitudes across different variants in
our ablations, so that they can use the same setting without
further lr search.

Partial fine-tuning. Our MAE partial fine-tuning (§4.3)
follows the setting in Table 9, except that we adjust the num-
ber of fine-tuning epochs. We observe that tuning fewer
blocks requires a longer schedule. We set the numbers of
fine-tuning epochs as {50, 100, 200} and use the optimal
one for each number of blocks tuned.

A.2. Supervised Training ViT-L/H from Scratch

We find that it is nontrivial to train supervised ViT-L/H
from scratch on ImageNet-1K. The training is unstable.
While there have been strong baselines with publicly avail-
able implementations [53] for smaller models, the recipes
for the larger ViT-L/H are unexplored. Directly applying
the previous recipes to these larger models does not work.
A NaN loss is frequently observed during training.

3Alternatively, we can pre-compute the mean and std of the features
and use the normalized features to train linear classifiers.



config value
optimizer AdamW
base learning rate 1e-4
weight decay 0.3
optimizer momentum β1, β2=0.9, 0.95
batch size 4096
learning rate schedule cosine decay
warmup epochs 20
training epochs 300 (B), 200 (L/H)
augmentation RandAug (9, 0.5) [12]
label smoothing [52] 0.1
mixup [69] 0.8
cutmix [68] 1.0
drop path [30] 0.1 (B), 0.2 (L/H)
exp. moving average (EMA) 0.9999

Table 11. Supervised training ViT from scratch.

method model params acc
iGPT [6] iGPT-L 1362 M 69.0
iGPT [6] iGPT-XL 6801 M 72.0
BEiT [2] ViT-L 304 M 52.1†

MAE ViT-B 86 M 68.0
MAE ViT-L 304 M 75.8
MAE ViT-H 632 M 76.6

Table 12. Linear probing results of masked encoding methods.
Our fine-tuning results are in Table 3. †: our implementation.

We provide our recipe in Table 11. We use a wd of 0.3,
a large batch size of 4096, and a long warmup, following
the original ViT [16]. We use β2=0.95 following [6]. We
use the regularizations listed in Table 11 and disable others,
following [64]. All these choices are for improving train-
ing stability. Our recipe can finish training with no NaN
loss. The accuracy is 82.6% for ViT-L (81.5% w/o EMA),
and 83.1% for ViT-H (80.9% w/o EMA). Both ViT-L and
ViT-H show an overfitting trend if not using EMA. As a by-
product, our recipe for ViT-B has 82.3% accuracy (82.1%
w/o EMA), vs. 81.8% in [53].

A.3. Object Detection and Segmentation in COCO

We adapt the vanilla ViT for the use of an FPN backbone
[36] in Mask R-CNN [24]. ViT has a stack of Transformer
blocks that all produce feature maps at a single scale (e.g.,
stride 16). We equally divide this stack into 4 subsets and
apply convolutions to upsample or downsample the inter-
mediate feature maps for producing different scales (stride
4, 8, 16, or 32, the same as a standard ResNet [25]). FPN is
built on these multi-scale maps.

For fair comparisons among different methods, we
search for hyper-parameters for each entry in Table 4 (in-
cluding all competitors). The hyper-parameters we search
for are the learning rate, weight decay, drop path rate, and
fine-tuning epochs. We will release code along with the
specific configurations. For full model and training details,
plus additional experiments, see [35].

A.4. Semantic Segmentation in ADE20K

We use UperNet [63] following the semantic segmenta-
tion code of [2]. We fine-tune end-to-end for 100 epochs
with a batch size of 16. We search for the optimal lr for
each entry in Table 5 (including all competitors).

dataset ViT-B ViT-L ViT-H ViT-H448 prev best
IN-Corruption ↓ [27] 51.7 41.8 33.8 36.8 42.5 [32]
IN-Adversarial [28] 35.9 57.1 68.2 76.7 35.8 [41]
IN-Rendition [26] 48.3 59.9 64.4 66.5 48.7 [41]
IN-Sketch [60] 34.5 45.3 49.6 50.9 36.0 [41]
our supervised training baselines:
IN-Corruption ↓ 45.8 42.3 41.3
IN-Adversarial 27.2 29.6 33.1
IN-Rendition 49.4 50.9 50.3
IN-Sketch 35.6 37.5 38.0

Table 13. Robustness evaluation on ImageNet variants (top-1
accuracy, except for IN-C [27] which evaluates mean corruption
error). We test the same MAE models (Table 3) on different Im-
ageNet validation sets, without any specialized fine-tuning. We
provide system-level comparisons with the previous best results.

The semantic segmentation code of [2] uses relative po-
sition bias [49]. Our MAE pre-training does not use it. For
fair comparison, we turn on relative position bias only dur-
ing transfer learning, initialized as zero. We note that our
BEiT reproduction uses relative position bias in both pre-
training and fine-tuning, following their code.

A.5. Additional Classification Tasks

We follow the setting in Table 9 for iNaturalist and
Places fine-tuning (Table 6). We adjust the lr and fine-
tuning epochs for each individual dataset.

B. Comparison on Linear Probing Results
In §4.3 we have shown that linear probing accuracy and

fine-tuning accuracy are largely uncorrelated and they have
different focuses about linear separability. We notice that
existing masked image encoding methods are generally less
competitive in linear probing (e.g., than contrastive learn-
ing). For completeness, in Table 12 we compare on linear
probing accuracy with masking-based methods.

Our MAE with ViT-L has 75.8% linear probing accu-
racy. This is substantially better than previous masking-
based methods. On the other hand, it still lags behind con-
trastive methods under this protocol: e.g., MoCo v3 [9] has
77.6% linear probing accuracy for the ViT-L (Figure 9).

C. Robustness Evaluation on ImageNet
In Table 13 we evaluate the robustness of our models on

different variants of ImageNet validation sets. We use the
same models fine-tuned on original ImageNet (Table 3) and
only run inference on the different validation sets, without
any specialized fine-tuning. Table 13 shows that our method
has strong scaling behavior: increasing the model sizes has
significant gains. Increasing the image size helps in all sets
but IN-C. Our results outperform the previous best results
(of specialized systems) by large margins.

In contrast, supervised training performs much worse
(Table 13 bottom; models described in A.2). For example,
with ViT-H, our MAE pre-training is 35% better on IN-A
(68.2% vs 33.1%) than the supervised counterpart.



Figure 10. Uncurated random samples on ImageNet validation images. For each triplet, we show the masked image (left), our MAE
reconstruction (middle), and the ground-truth (right). The masking ratio is 75%.



Figure 11. Uncurated random samples on COCO validation images, using an MAE trained on ImageNet. For each triplet, we show the
masked image (left), our MAE reconstruction (middle), and the ground-truth (right). The masking ratio is 75%.


