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A. Details in implementation

Implentation of MS calibration. We found the original
MS calibration mentioned in the main paper did not work
well. The deep reason is: If instances of rare class ¢ are al-
ways predicted as frequent class j with very high confidence
(i.e., M; ; = 1and M;; = 0), then plenty of instances will
be miscalibrated into class ¢ (s; =~ 0). To avoid this, we
did two slight modifications to the original MS calibration
in our experiments. Firstly, instead of using s; = M, ;, we
adopted s; = Zgzl M, ; to soften the distribution. Sec-
ondly, if s; was still close to 0, we did not predict class ¢ in
this case. As shown in Table 1, the modifications do help
improve the performance of MS calibration on each split.

Table 1. The performance of MS calibration before and after ap-
plied two modifications. Experiments are conducted on LVIS v0.5
using Mask R-CNN with ResNet-50-FPN and RFS [4] sampler.

Modification b
41 4 AP AP, AP. APy AP
v 20.0 13,5 19.1 237 199
v 265 20.0 277 275 263
v v 27.0 206 282 28.0 27.0

Applied to EQL v2 [11] and Seesaw [12]. PCB regular-
ization can be easily applied to EQL v2 [11] and Seesaw
loss [12] as they only change the loss weight or model ac-
tivation. For each k-th proposal of label y at current itera-
tion, the original equalization loss v2 can be formulated as
follows:

c
Lpqrva(k) = — Zwi [yilog pi + (1 — yi)log(1 — pi)] ,

i=1
ey

where p; = 1/ (1 e’
ity for class ¢, y; indicates whether the proposal belongs
to class ¢, and w; is a weight calculated from gradient per-
spective. When applied to EQL v2, our PCB regularization
becomes

) is the post-sigmoid probabil-

c
Lpcp = — Z w; [Mfy log pi + (1 — M{ ) log(1 — p;)
i=1
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And the total classification loss function for the proposal is
Lys(k) =aLpcp(k)+ (1 —a)Lggr vz - 3)

Similarly, we define the Seesaw variant of PCB regulariza-
tion. The original Seesaw loss terms as

C
Lseesaw(k) = - Z Yi logﬁi 5
=1
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The S;; is composed by a mitigation factor and a compen-
sation factor. So, the PCB regularization can be written as

with ﬁi = (4)

C
Lpcp(k) = = M/, logp,
i=1
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We combine them to get

Lcls(k) = CVLPCB(]{:) + (1 - a)Lseesaw . (6)
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Regression loss calculation. In practice, we calculate the
regression loss only in the last recurrent step, rather than in



Table 2. Analysis on the influence of calculating the regression
loss in each step or only last step. Experiments are conducted on
LVIS v0.5.

Method ~ Regression | AP AP, AP. AP; AP’
Soft cach 251 11.1_ 259 29.6 253
ottmax last 251 126 255 295 252
RES cach 275 204 282 294 278
last 277 218 280 297 282

each step. So the overall objective becomes:

R
E :wTLle
r=1

It shows similar performance to the later, while obtains
higher AP,.. The results of comparison are shown in Tab. 2.
While the overall mask AP and box AP are comparable for
the two manners, there is a constant improvement in perfor-
mance of rare classes (over 1 AP,) for the former.
Training details. Following [12], we implement our
method with mmdetection [1]. Mask R-CNN [5] with
ResNet-50-FPN and ResNet-101-FPN [6, 8] is adopted as
our baseline model. We utilize the standard 2x schedule
for LVIS of both versions. The models are trained using
SGD with 0.9 momentum and 0.0001 weight decay for 24
epochs. With batch size of 16 on 8 GPUs, the initial learn-
ing rate is set to 0.02 and is decreased by 0.1 after 16 and 22
epochs, respectively. The training data augmentations in-
clude scale jittering (640-800) and horizontal flipping. For
evaluation, we set the maximum number of detections per
image to 300 and the minimum score threshold to 0.0001,
as [4].

L= + Lﬁc + Lmask’ . (7)

B. Analysis on o w/o iterative learning
paradigm

As discussed in Sec. 3.3 of the main paper, the perfor-
mance will deteriorate soon with the increase of « if the
iterative learning paradigm is not applied. Tab. 3 shows an
example. As « increases, AP, gets improved until o = 0.6,
while AP, and AP decline soon after o > 0.2. So the PCB
regularization hurts the fundamental classification, and the
flexibility of debiasing is limited. By applying iterative
learning paradigm, which guarantees the fundamental clas-
sification, such worry gets relieved. The room for debiasing
is increased.

C. Comparing with refinement module in
CrowdDet [2]

We notice that the refinement module (RM) in [2] is sim-
ilar to our iterative learning paradigm. There are two main
differences, RM concatenates the predictions and features

Table 3. Analysis on the influence of different PCB regularization
coefficient o« without iterative learning paradigm. Experiments are
conducted with RFS on LVIS v0.5.

a | AP AP, AP. AP; AP’
00 [ 256 160 264 285 256
02 | 267 189 275 288 27.1
04 | 265 183 274 287 267
0.6 | 262 197 264 284 266
0.8 | 260 185 267 281 265
1.0 | 251 187 259 265 253

Table 4. Comparison with refine module (RM in short) in Crowd-
Det [2]. Experiments are conducted with RFS on LVIS v0.5. PCB
regularization is applied.

Paradigm | AP AP, AP. AP; AP’

N/A 267 189 275 288 27.1
RM 264 20.8 265 285 269
Iterative | 27.7 21.8 28.0 29.7 28.2

rather than element-wise operation, and it utilizes features
of the penultimate layer. We also provide the results of
adopting RM as the learning paradigm, which are summa-
rized in Tab. 4. While RM achieves promising AP, com-
pared to PCB regularization, it hurts the performance of
common classes and frequent classes much, so the overall
AP drops. Different from RM, our proposed iterative learn-
ing paradigm guarantees the performance of common and
frequent classes.

D. Extension to long-tailed classification.

We also extend our PCB to long-tailed classification
to testify its generalization ability. The commonly used
ImageNet-LT [9] dataset is adopted in our experiment, and
we use ResNeXt-50 [13] as the backbone network. Models
are trained for 90 epochs with batch size 512. The intial
learning rate is set to 0.2 and the first 5 epochs are trained
with linear warm-up learning rate schedule [3]. The learn-
ing rate is deacyed at 60" and 80" epoch by 0.1. For the
implementation of PCB, we ignore the M L P, and set the
dimension of hidden layers in M L P,;; to 256 for simplicity.
For a feature vector from the backbone, it will go through
the same classifier for two times, and the last prediction is
used for evaluation. + is set to 0.9999. We train PCB in a
decoupled manner [7], so the PCB regularizer is only ap-
plied in the fine-tune phase.

Two methods are utilized as baseline, CE and
BSCE [10]. The results are in Tab. 5. Equipped with PCB
(ais set to 0.8 and 0.15 respectively), the performance gain
is significant and consistent, the accuracy of few split is
raised almost 10% even on the strong baseline. The results
fully demonstrate the generalization ability of our PCB.



Table 5. Accuracy on ImageNet-LT with a ResNeXt-50 backbone.

Method PCB [ Many Medium Few  Overall

CE X 67.76 38.89 7.44 45.73

v 61.68 49.10 2197 50.26

X 62.65 48.75 2544  50.94

BSCE [10] v 61.72 49.66 34.85 52.29
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