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A. Details in implementation
Implentation of MS calibration. We found the original
MS calibration mentioned in the main paper did not work
well. The deep reason is: If instances of rare class i are al-
ways predicted as frequent class j with very high confidence
(i.e., Mi,j ≈ 1 and Mi,i ≈ 0), then plenty of instances will
be miscalibrated into class i (si ≈ 0). To avoid this, we
did two slight modifications to the original MS calibration
in our experiments. Firstly, instead of using si = Mi,i, we
adopted si =

∑C
k=1 Mk,i to soften the distribution. Sec-

ondly, if si was still close to 0, we did not predict class i in
this case. As shown in Table 1, the modifications do help
improve the performance of MS calibration on each split.

Table 1. The performance of MS calibration before and after ap-
plied two modifications. Experiments are conducted on LVIS v0.5
using Mask R-CNN with ResNet-50-FPN and RFS [4] sampler.

Modification
AP APr APc APf APb

#1 #2
✓ 20.0 13.5 19.1 23.7 19.9

✓ 26.5 20.0 27.7 27.5 26.3
✓ ✓ 27.0 20.6 28.2 28.0 27.0

Applied to EQL v2 [11] and Seesaw [12]. PCB regular-
ization can be easily applied to EQL v2 [11] and Seesaw
loss [12] as they only change the loss weight or model ac-
tivation. For each k-th proposal of label y at current itera-
tion, the original equalization loss v2 can be formulated as
follows:

LEQLv2(k) = −
C∑
i=1

wi [yi log p̂i + (1− yi) log(1− p̂i)] ,

(1)

where p̂i = 1/
(
1 + e−zfg

i

)
is the post-sigmoid probabil-

ity for class i, yi indicates whether the proposal belongs
to class i, and wi is a weight calculated from gradient per-
spective. When applied to EQL v2, our PCB regularization
becomes

LPCB = −
C∑
i=1

wi

[
M̂ t

i,y log p̂i + (1− M̂ t
i,y) log(1− p̂i)

]
.

(2)
And the total classification loss function for the proposal is

Lcls(k) = αLPCB(k) + (1− α)LEQLv2 . (3)

Similarly, we define the Seesaw variant of PCB regulariza-
tion. The original Seesaw loss terms as

Lseesaw(k) = −
C∑
i=1

yi log p̂i ,

with p̂i =
exp(zfgi )∑C

j ̸=i Sij exp(z
fg
j ) + exp(zfgi )

. (4)

The Sij is composed by a mitigation factor and a compen-
sation factor. So, the PCB regularization can be written as

LPCB(k) = −
C∑
i=1

M̂ t
i,y log p̂i ,

with p̂i =
exp(zfgi )∑C

j ̸=i Sij exp(z
fg
j ) + exp(zfgi )

. (5)

We combine them to get

Lcls(k) = αLPCB(k) + (1− α)Lseesaw . (6)

Regression loss calculation. In practice, we calculate the
regression loss only in the last recurrent step, rather than in
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Table 2. Analysis on the influence of calculating the regression
loss in each step or only last step. Experiments are conducted on
LVIS v0.5.

Method Regression AP APr APc APf APb

Softmax
each 25.1 11.1 25.9 29.6 25.3
last 25.1 12.6 25.5 29.5 25.2

RFS
each 27.5 20.4 28.2 29.4 27.8
last 27.7 21.8 28.0 29.7 28.2

each step. So the overall objective becomes:

L =

[
R∑

r=1

wrL
r
cls

]
+ LR

loc + Lmask . (7)

It shows similar performance to the later, while obtains
higher APr. The results of comparison are shown in Tab. 2.
While the overall mask AP and box AP are comparable for
the two manners, there is a constant improvement in perfor-
mance of rare classes (over 1 APr) for the former.
Training details. Following [12], we implement our
method with mmdetection [1]. Mask R-CNN [5] with
ResNet-50-FPN and ResNet-101-FPN [6, 8] is adopted as
our baseline model. We utilize the standard 2× schedule
for LVIS of both versions. The models are trained using
SGD with 0.9 momentum and 0.0001 weight decay for 24
epochs. With batch size of 16 on 8 GPUs, the initial learn-
ing rate is set to 0.02 and is decreased by 0.1 after 16 and 22
epochs, respectively. The training data augmentations in-
clude scale jittering (640-800) and horizontal flipping. For
evaluation, we set the maximum number of detections per
image to 300 and the minimum score threshold to 0.0001,
as [4].

B. Analysis on α w/o iterative learning
paradigm

As discussed in Sec. 3.3 of the main paper, the perfor-
mance will deteriorate soon with the increase of α if the
iterative learning paradigm is not applied. Tab. 3 shows an
example. As α increases, APr gets improved until α = 0.6,
while APc and APf decline soon after α > 0.2. So the PCB
regularization hurts the fundamental classification, and the
flexibility of debiasing is limited. By applying iterative
learning paradigm, which guarantees the fundamental clas-
sification, such worry gets relieved. The room for debiasing
is increased.

C. Comparing with refinement module in
CrowdDet [2]

We notice that the refinement module (RM) in [2] is sim-
ilar to our iterative learning paradigm. There are two main
differences, RM concatenates the predictions and features

Table 3. Analysis on the influence of different PCB regularization
coefficient α without iterative learning paradigm. Experiments are
conducted with RFS on LVIS v0.5.

α AP APr APc APf APb

0.0 25.6 16.0 26.4 28.5 25.6
0.2 26.7 18.9 27.5 28.8 27.1
0.4 26.5 18.3 27.4 28.7 26.7
0.6 26.2 19.7 26.4 28.4 26.6
0.8 26.0 18.5 26.7 28.1 26.5
1.0 25.1 18.7 25.9 26.5 25.3

Table 4. Comparison with refine module (RM in short) in Crowd-
Det [2]. Experiments are conducted with RFS on LVIS v0.5. PCB
regularization is applied.

Paradigm AP APr APc APf APb

N/A 26.7 18.9 27.5 28.8 27.1
RM 26.4 20.8 26.5 28.5 26.9

Iterative 27.7 21.8 28.0 29.7 28.2

rather than element-wise operation, and it utilizes features
of the penultimate layer. We also provide the results of
adopting RM as the learning paradigm, which are summa-
rized in Tab. 4. While RM achieves promising APr com-
pared to PCB regularization, it hurts the performance of
common classes and frequent classes much, so the overall
AP drops. Different from RM, our proposed iterative learn-
ing paradigm guarantees the performance of common and
frequent classes.

D. Extension to long-tailed classification.

We also extend our PCB to long-tailed classification
to testify its generalization ability. The commonly used
ImageNet-LT [9] dataset is adopted in our experiment, and
we use ResNeXt-50 [13] as the backbone network. Models
are trained for 90 epochs with batch size 512. The intial
learning rate is set to 0.2 and the first 5 epochs are trained
with linear warm-up learning rate schedule [3]. The learn-
ing rate is deacyed at 60th and 80th epoch by 0.1. For the
implementation of PCB, we ignore the MLPloc and set the
dimension of hidden layers in MLPcls to 256 for simplicity.
For a feature vector from the backbone, it will go through
the same classifier for two times, and the last prediction is
used for evaluation. γ is set to 0.9999. We train PCB in a
decoupled manner [7], so the PCB regularizer is only ap-
plied in the fine-tune phase.

Two methods are utilized as baseline, CE and
BSCE [10]. The results are in Tab. 5. Equipped with PCB
(α is set to 0.8 and 0.15 respectively), the performance gain
is significant and consistent, the accuracy of few split is
raised almost 10% even on the strong baseline. The results
fully demonstrate the generalization ability of our PCB.



Table 5. Accuracy on ImageNet-LT with a ResNeXt-50 backbone.

Method PCB Many Medium Few Overall

CE
✗ 67.76 38.89 7.44 45.73
✓ 61.68 49.10 21.97 50.26

BSCE [10]
✗ 62.65 48.75 25.44 50.94
✓ 61.72 49.66 34.85 52.29
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