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Due to the restrictions on the length, we could not include de-
scriptions of the state-of-the-art techniques, datasets, hyper-
parameters and additional results in the main manuscript.
However, to keep the overall manuscript self-contained, we
include the following in the supplementary material:

* Section 1: Description of competing methods.

* Section 2: Detailed description of benchmark datasets
used in our experiments.

 Section 3: Training procedure and implementation of

trained using v € {1, 2,3}, and report it as FL in the
results.

e For DCA [13], we train on the following loss: NLL+ -
DCA, where DCA is as defined in [13], and 3 is a hyper-
parameter. We train varying 8 € {1, 5,10, 15, 20,25}
as performed in [13]. DCA results are reported under
the name DCA.

* We use MMCE [ 0], as a regularizer along with NLL. We
use the weighted MMCE loss in our experiments with
A e {2,4}.

e For FLSD [16], we train with v = 3.

proposed, and competing methods.
* Section 4: Additional results.

* Source code link: MDCA Official PyTorch Code

1. Competing Methods and hyperparameters

used

In this section, we provide a brief description of each of

the compared method with hyperparameter settings used in
training.

e ForBrier Score [I] we train on the loss defined as
the squared loss of the predicted probability vector and
the one-hot target vector.

e Label Smoothing [17], takes the form LS =
- Z]K:1 ¢, 10g(pi,j) where p; ; is the predicted
confidence score for sample 7, for class 5. Similarly, we
define soft target vector, g;, for each sample 7, such that
gi,j =af(K —1)if j # y;, else ¢; ; = (1 — ). Here
o is a hyper-parameter. We trained using o = 0.1, and
refer to label smoothing as LS in the results.

« Focal loss [I15]is defined as FL = — 3N (1 —
PDiy; )Y 1og(Piy, ), where 7 is a hyper-parameter. We

For each of the above methods, we report the result of the
best performing trained model according to the accuracy
obtained on the validation set.

2. Dataset description

We have used the following datasets in our experiments:

1. CIFAR10 [8]: This dataset has 60, 000 color images of
size 32 X 32 each, equally divided into 10 classes. The
pre-divided train set comes with 50, 000 images and
the test set has around 10, 000 images. Using the pol-
icy defined above, we have a train/val/test split having
45000/5000/10000 images respectively.

2. CIFAR100 [8]: This dataset comprises of 60,000
colour images of size 32232 each, but this time, equally
divided into 100 classes. The pre-divided train set again
comes with 50, 000 images and the test set has around
10,000 images. We have a train/val/test split having
45000/5000/10000 images respectively.

3. SVHN [ 18] : The Street View House Number (SVHN)
is a digit classification benchmark dataset that contains
600000 32 x 32 RGB images of printed digits (from
0 to 9) cropped from pictures of house number plates.
The cropped images are centered in the digit of interest,


https://github.com/mdca-loss/MDCA-Calibration

but nearby digits and other distractors are kept in the
image. SVHN has comes with a training set (73257)
and a testing set (26032). We randomly sample 10% of
the training set to use as a validation set.

. Tiny-ImageNet [4] : It is a subset of the ImageNet
dataset containing 64 x 64 RGB images. It has 200
classes with each class having 500 images. The val-
idation set contains 50 images per class. We use the
provided validation set as the test set for our experi-
ments.

. 20 Newsgroups [ |]: It is a popular text classification
dataset containing 20,000 news articles, categorised
evenly into 20 different newsgroups based on their con-
tent.

. Mendeley V2 [7]: Inspired from [13], we use this
medical dataset. The dataset contains OCT (optical
coherence tomography) images of retina and pediatric
chest X-ray images. However, we only use the chest
X-ray images in our experiments. The chest X-ray
images come with a pre-defined train/test split having
4273 pneumonia images and 1583 normal images of
the chest.

. PACS dataset [12]: We use the dataset to study cali-
bration under domain shift. The dataset comprises of
a total 9991 images spread across 4 different domains
with 7 classes each. The domains are namely Photo,
Art, Sketch and Cartoon. We fine-tune the ResNet-18
model, pretrained ImageNet dataset, on the Photo do-
main using various competing techniques and test on
the other three domains to measure how calibration
holds in a domain shift. Following [12], we also divide
the training set of photo domain into 9 : 1 train/val set.

. Rotated MNIST Dataset: This dataset is also
used for domain shift experiments. Inspired
from [21], we create 5 different test sets namely
{M15, Mgo, M45, MG(], M75}. Domain drift is intro-
duced in each M, by rotating the images in the MNIST
test set by = degrees counter-clockwise.

. Segmentation Datasets- PASCAL VOC 2012 [5]:
This a segmentation dataset and consists of images
with pixel-level annotations. There are 21 classes over-
all (One background class and 20 foreground object
classes). The dataset is divided into Train (1464 im-
ages), Val (1449 images) and Test (1456 images) set.
We, however, only make use of the Train and the Val set.
Models are trained on the Train set and the evaluation
is reported on the Val set.

NLL+DCA . NLL+MDCA ) FL+DCA | FL+MDCA

Figure 1. Comparison of Reliability diagrams of: (left) NLL+DCA
vs NLL+MDCA and (right) FL+DCA vs. FL+MDCA. We use ResNet-
32 trained on CIFAR10 dataset for comparison.

3. Training Procedure and Implementation

Backbone Architecture: We use ResNet [6] backbone for
most of our experiments. For training on CIFAR10, and
CIFAR100 datasets we used ResNet-32 and ResNet-56. For
SVHN we used ResNet-20 and ResNet-56. Following [13],
for Mendeley V2 dataset, we use a ResNet-50 architecture
pre-trained on ImageNet dataset [4]. We use the backbone as
a fixed feature extractor and add a 1 x 1 convolutional layer
and two fully connected layers on top of the feature extractor.
Segmentation experiments make use of DeepLabV3+ [2]
based on the Xception65 [3] backbone

Train Parameters: For all our experiments we used a single
Nvidia 1080 Ti GPU. We trained CIFAR10 for a total of 160
epochs using a learning rate of 0.1, and it is reduced by a fac-
tor of 10 at the 80" and 160" epoch. Train batch size was
kept at 128 and DNN was optimized using Stochastic Gradi-
ent Descent (SGD) with momentum at 0.9 and weight decay
being 0.0005. Furthermore, we augment the images using
random center crop and horizontal flips. We use same pa-
rameters for CIFAR100, except the number of epochs, where
we train it for 200 epochs. Again learning rate is reduced
by a factor of 10, but this time it is reduced at epochs 100
and 150. For Tiny-ImageNet, we followed the same training
procedure as done by [16]. For SVHN, we keep the same
training procedure as above except the number of epochs;
we train for 100 epochs, with it getting reduced at epochs
50 and 70 with a factor of 10 yet again. We do not augment
the images when training on SVHN. We use PyTorch frame-
work for all our implementations. Our repository is inspired
from https://github.com/bearpaw/pytorch-
classification. We also take help from the official
implementation of [16] to implement some of the baseline
methods. For the segmentation experiments we make use
of the following repository: https://github.com/
LikeLy-Journey/SegmenTron. We train the segmen-
tation models for 120 epochs using SGD optimizer with a
warm-up LR scheduler. To train with focal loss, we used
~ = 3. The rest of the parameters for the optimizer and the
scheduler were kept the same as provided by the Segmen-
Tron repository.

Optimizing Hyper-parameter /5 for MDCA: We vary the
hyper-parameter 3 € [0.25,0.5,1, 5, 10, ... 50] in our exper-
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Figure 2. Effect of 3 on Accuracy and SCE (10~2) on FL+MDCA
on the ResNet-20 model trained on SVHN dataset.

iments. Figure 2 shows how calibration error and accuracy
is affected when we increase (8 in different model-dataset
pairs. We see a general trend that calibration is best achieved
when [ is close to 1, and as we increase it, the calibration as
well as the accuracy starts to drop (accuracy decreases and
the SCE score increases).

Post-Hoc Calibration Experiments: For comparison
with post-hoc techniques, we set aside 10% of the training
data as a validation set (hold-out set) to conduct post-hoc
calibration. For Temperature Scaling (TS), we perform a
grid search between the range of 0 to 10 with a step-size of
0.1 to find the optimal temperature value that gives the least
NLL on the hold-out set. For Dirichlet Calibration (DC), we
attach a single layer neural network at the end of the DNN
and use ODIR [9] regularization on the weights of the same.
We train on the hold-out set keeping the rest of the DNN
weights frozen except the newly added layer. We again use
grid search to find the optimal hyper-parameters A and p
that give the least NLL on the hold-out set. We vary A\ €

{0,0.01,0.1,1,10,0.005, 0.05, 0.5, 5,0.0025, 0.025, 0.25, 2.5}

and p € {0,0.01,0.1,1,10}.

Domain Shift Experiments: For PACS dataset, we use the
official PyTorch ResNet-18 model pre-trained on ImageNet
dataset. We re-initialized its last fully connected layer to
accommodate 7 classes, and finally fine-tuned on the Photo
domain. We use the SGD optimizer with same momentum
and weight decay values as done for CIFAR10/100 and de-

Lo L Auziliary Accuracy SCE (10-%) ECE (%)

ResNet-32 on CIFAR10 dataset:

None 92.54 8.68 425
Cross Entro DCA [13] 92.94 8.41 4.00
5 24 MMCE[10]  91.59 8.17 331
MDCA (ours)  91.85 463 1.69
None 92.48 14.09 6.28
) DCA [13] 88.69 8.14 344
Label Smoothing [17] MMCE[10]  91.92 2249 10.07
MDCA (ours)  93.01 1238 5.66
None 92.52 4.09 1.01
DCA [13] 92.65 750 3.49
Focal Loss [1] MMCE[10]  90.76 26.41 13.38
MDCA (ours)  92.82 322 0.93

ResNet-20 on SVHN dataset:
None 96.14 3.43 1.64
Cross Entr DCA [13] 96.17 429 2.02
0ss Entropy MMCE[10]  95.88 9.18 434
MDCA (ours) 9633 1.46 0.43
None 96.24 18.80 3.88
‘ . DCA [13] 96.55 9.80 4.46
Label Smoothing [17] MMCE[10]  96.11 3175 15.50
MDCA (ours) 96.14 13.91 6.46
None 96.17 254 0.89
o DCA [13] 96.35 2.12 0.44
Focal Loss [1] MMCE[10]  95.83 25.01 12.79
MDCA (ours) 96.08 1.90 0.47

Table 1. Ablation to study the impact of various auxiliary losses on
two models : ResNet-32 on CIFAR10 and Resnet-20 trained model
on SVHN Dataset. Our approach exhibits least calibration error
without sacrificing on the accuracy.

scribed earlier. Training batch size was fixed at 256, and the
model was trained for 30 epochs with initial learning rate,
set at 0.01, getting reduced at epoch 20 with a factor of 10.
Training parameters are chosen such that they give the best
performing model i.e. having the maximum accuracy on the
Photo domain val set.

For Rotated MNIST, we used PyTorch framework to gen-
erate rotated images. We use the ResNet-20 model to train
on the standard MNIST train set for 30 epochs with a learn-
ing rate of 0.1 for first 20 epochs, and then with 0.01 for
the last 10 epochs. Rest of the details like batch size and
optimizer remain same as the CIFAR10/100 experiments.
We did not augment any images, and selected the training
parameters such that the model gives best accuracy on the
validation set.

For 20 Newsgroups, we train the Global Pooling Con-
volutional Network [[4] using the ADAM optimizer, with
learning rate 0.001, and the default values of betas at 0.9 and
0.999 respectively. We used G1oVe word embeddings [19]
to train the network. We trained the model for 50 epochs.

4. Additional Results
We report the following additional results:

1. Class-j-ECE score: In Table 3 of main manuscript we
reported the Class-j-ECE score for SVHN. In Table 6



Methods | Art Cartoon Sketch | Average Method Clean M5  Mso Mys  Meo  Mrgs | Average
SCE(lo—S) SCE (%)
NLL 007 019 070 296 7.50 10.60| 3.67
NLL 633 1795 1501 | 13.10 LS [17] 200 200 193 291 667 893 | 407
LS[17] 780 1195 10.88 10.21 FL[15] 029 081 134 262 704 1010 | 3.70
FL [15] 8.61 16.62 10.94 12.06 Brier Score [1] 023 051 1.09 283 658 9.10 3.39
Brier Score [1] 6.55 13.19 15.63 11.79 MMCE [10] 2.51 405 5.01 455 528 529 4.45
MMCE [10] 6.35 15.70 17.16 13.07 DCA [13] 007 020 091 371 842 11.65| 4.6
DCA [13] 7.49 18.01 14.99 13.49 FLSD [16] 1.30 2.09 3.10 3.05 4.88 7.56 3.67
FLSD [16] 8.35 13.39 13.86 11.87 Ours (FL+MDCA) 020 048 094 251 665 9.61 | 340
Ours (FL+MDCA) | 6.21 11.91 11.08 | 973 ECE (%)
ECE (%) NLL 0.11 038 1.13 1054 3195 4506 | 14.86
LS[17] 980 932 7.3 686 2736 3728 | 1631
Brier Score [1] 3.35 33.68 42.61 26.55 FL [15] 1.34 3.1 392 521 2811 41.17 13.81
NLL 9.42 52.99 35.56 32.66 Brier Score [ 1] 090 207 257 595 2524 3816 | 1248
LS[17] 8.70 2521 13.29 15.73 MMCE [10] 4.72 1542 23.01 18.88 10.74 6.80 13.26
. DCA [13] 021 029 188 13.83 3631 5025| 17.13
Focal Loss [15] 7.34 4896 2533 | 2721 FLSD [16] 650 1043 1433 792 1480 2034 | 13.89
MMCE [10] 17.06 43.25 40.79 33.70
DCA [13] 13.38 55.20 37.76 35.45 Ours (FL+MDCA) 0.79 2.03 2.94 6.18 2577 39.29 12.83
FLSD [16] 841 3443 3001 | 24.28 Top-1 (%) Accuracy

Ours (FL+MDCA) | 6.29 29.81 23.05 | 1971

Top-1 (%) Accuracy

Brier Score [1] 59.28 24.83 28.43 37.51
NLL 59.08 21.20 28.00 36.09
LS[17] 56.35 22.01 29.88 36.08
FL [15] 52.83 17.32 26.70 32.28
MMCE [10] 60.60 29.95 20.36 36.97
DCA [13] 57.91 20.86 28.30 35.69
FLSD [16] 54.54 20.82 29.35 34.90

Ours (FL+MDCA) | 6323 2786  23.01 | 38.03

Table 2. Table comparing SCE, ECE and Top-1% Accuracy val-
ues of our method against others on PACS [12] dataset when the
model is trained on Phot o domain and tested on domains: Art,
Cartoon, and Sketch

here, we we provide additional results for CIFAR10.

2. Comparison with other auxiliary losses: In Table
6 in the main manuscript showed how the proposed
MDCA can be used along with NLL, LS [20], and FL
[15] to improve the calibration performance without
sacrificing the accuracy. In Tab. 1 here, we show a
similar comparison for other competitive approaches,
namely DCA [13], and MMCE [10]. Using MDCA, gives
better calibration than other competitive approaches.

3. Calibration performance under dataset drift: A
model trained using our proposed loss gives better cali-
bration under dataset drift as well. Table 4 in the main
manuscript showed SCE score comparison on PACS.
We give more detailed comparison here in Tab. 2 which
shows top 1% accuracy, ECE as well. We repeat SCE
numbers from main manuscript for completion. Tab. 3
shows the corresponding numbers for Rotated MNIST.

Just like we showed that using MDCA in conjunction

NLL 99.61 98.79 9338 73.82 4324 24.07 72.15
LS[17] 99.62 9839 92.04 69.33 3994 2299 70.39
FL[15] 99.63 9820 91.87 69.95 38.67 20.83 69.86
Brier Score [ 1] 99.63 98.72 9254 7129 4190 22.73 71.14
MMCE [10] 98.43 9499 8393 53838 28.76 16.84 62.81
DCA [13] 99.60 9836 91.51 68.34 3832 2093 69.51
FLSD [16] 99.67 98.79 9277 71.17 40.17 20.84 70.57

Ours (FL+MDCA) 99.59 98.61 93.13 7092 4193 23.37‘ 71.26

Table 3. Table comparing SCE, ECE and Top-1% Accuracy values
of our loss with other methods on the Rotated-MNIST dataset
trained using a ResNet-20 model.

with NLL, LS [20], and FL [15] gives best calibration
performance, we show that this remains true even for
the dataset drift case. Tab. 4 and Tab. 5 show the
comparison on Rotated MNIST and PACS datasets re-
spectively.

Reliability Diagrams: Fig. 2 in the main manuscript
showed reliability and confidence plots for MDCA used
with NLL and LS respectively. We show similar plots
for MDCA+FL in Fig. 3.



Domain | NLL NLL+MDCA‘ LS LS+MDCA | FL FL+MDCA

SCE (%)

Clean | 0.07 0.07 2.00 1.9 0.29 0.20
My 0.19 0.19 2.00 1.9 0.81 0.48 FL FL+MDCA
Mso 0.70 0.66 1.93 1.88 1.34 0.94 1.0 1.0
Mys 2.96 3.17 291 2.85 2.62 251 =3 outputs| 3 Outputs
Mo 7.50 7.99 6.67 6.08 7.04 6.65 0.8 0.8 .
Mz 10.60 1117 8.93 8.82 10.10 9.61 . o
Average | 3.67 3.88 | 407 3.94 3.70 3.40 § 069 v ol § 061 "

=} =}

ECE (%) 3 044 304,

< < :
Clean | 0.11 0.22 9.89 9.83 134 0.79 oad I
My 0.38 021 9.32 9.41 3.11 2.03 L, pa
Mgy 113 131 7.13 7.38 3.92 2.94 oo LT ook
My 10.54 12.50 6.86 8.41 521 6.18 0.0 02 04 0.6 08 1.0 00 02 04 06 08 1.0
Mgy 31.95 35.02 2736 2532 | 2811 25.77 Confidence Confidence
Mz 45.06 49.41 3728 3841 41.17 39.29 ) b)
Average | 14.86 1645 | 1631 16.46 13.81 12.83 . . ! .

Confidence Histogram Confidence Histogram
Top-1 (%) Accuracy 1.0 1.0

Clean | 99.61 9964 | 99.62 9963 | 99.63  99.59 § | deermw g | T Accuwey

= 0.84 ™= Confidence . . . = 0.8 4 ™= Confidence . . .
Mis 98.79 98.63 9839 9845 9820 9861 g O g LR
Mg 93.38 93.23 9204 9254 | 91.87  93.13 3 R 3 R
Mys 73.82 71.53 69.33 69.74 69.95 70.92 PO6Y - PO6T
Mo 43.24 4127 39.94  41.88 3867 4193 S o °© o
Mz | 2407 22,05 2299 2297 | 2083 2337 go4 o go4y o
Average | 72.15 71.06 | 70.39 7087 | 69.86 71.26 Qo024 302

o o

0 0

Table 4. Table comparing SCE, ECE and Top-1% Accuracy values %60 02 o1 o6 o0 %60 02 o1 o6 o0
of our method against others for ResNet-20 model on Rotated- Confidence C"ngdence
MNIST dataset. Clean denotes the original dataset, and subscript 2 )

der the ‘M’ indicat le of rotation f h digit.
under the fndicates angle of rotation for each cigt Figure 3. Reliability diagrams (a,b) and confidence histograms (c,d)

of FL trained model compared against MDCA regularized version
(FL+MDCA). We use ResNet-32 trained on CIFAR10 dataset for

comparison.
Domain \ NLL NLL+MDCA \ LS LS+MDCA \ FL  FL+MDCA
SCE (107%)
Art 6.33 5.10 7.80 5.70 8.61 6.21
Cartoon | 17.95 16.53 11.95 12.07 16.22 11.91
Sketch | 15.01 13.49 10.88 11.70 10.94 11.08
Average \ 13.10 11.71 \ 10.21 9.82 \ 12.06 9.73
ECE (%)
Art 9.42 4.99 8.70 11.80 7.34 6.29
Cartoon | 52.99 47.96 25.21 22.73 48.96 29.81
Sketch | 35.56 31.68 13.29 10.34 25.33 23.05 Method . . . Classes .
airplane automobile bird cat deer dog frog horse ship truck
Average | 32.66 28.21 | 15.73 1496 | 27.21 19.71 Cross Entropy 0.98 043 112 197 065 147 065 044 058 057
Focal Loss [15] 0.38 0.23 069 108 039 091 037 034 025 024
Top-1 (%) Accuracy LS[17] 1.64 1.89 126 101 164 125 166 162 176 1.77
Brier Score [1] 0.71 0.25 091 156 061 126 04 034 041 037
Art 59.08 61.67 56.35 59.57 52.83 63.23 MMCE [10] 1.88 1.29 157 243 183 162 157 151 109 175
Cartoon | 21.20 21.72 22.01 24.62 17.32 27.86 DCA[13] 0.80 0.43 1.18 171 093 144 052 055 051 0.6
Sketch | 28.00 26.90 29.88 26.55 26.70 2301 FLSD [16] 0.99 1.12 081 LIl 081 144 081 085 070 114
- : : - : - Ours (FL+MDCA)  0.36 037 036 060 035 059 031 041 025 042
Average \ 36.09 36.76 \ 36.08 36.91 \ 32.28 38.03

) ) Table 6. Class-j-ECE (%) values on all ten classes for a ResNet-
Table 5. Ablation comparing SCE, ECE and Top-1 Accuracy values 32 model trained on the CIFAR10 dataset comparing different

of models using MDCA as an auxiliary loss along with other classi- jeamgple calibration methods including ours highlighted in Cyan.
fication losses. The numbers correspond to training a ResNet-18

model on Photo subset from PACS dataset, and testing on other
subsets of the PACS.
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