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Due to the restrictions on the length, we could not include de-

scriptions of the state-of-the-art techniques, datasets, hyper-

parameters and additional results in the main manuscript.

However, to keep the overall manuscript self-contained, we

include the following in the supplementary material:

• Section 1: Description of competing methods.

• Section 2: Detailed description of benchmark datasets

used in our experiments.

• Section 3: Training procedure and implementation of

proposed, and competing methods.

• Section 4: Additional results.

• Source code link: MDCA Official PyTorch Code

1. Competing Methods and hyperparameters

used

In this section, we provide a brief description of each of

the compared method with hyperparameter settings used in

training.

• For Brier Score [1] we train on the loss defined as

the squared loss of the predicted probability vector and

the one-hot target vector.

• Label Smoothing [17], takes the form LS =
−
∑N

i=1

∑K
j=1

qi,j log(p̂i,j) where p̂i,j is the predicted

confidence score for sample i, for class j. Similarly, we

define soft target vector, qi, for each sample i, such that

qi,j = α/(K − 1) if j ̸= yi, else qi,j = (1− α). Here

α is a hyper-parameter. We trained using α = 0.1, and

refer to label smoothing as LS in the results.

• Focal loss [15] is defined as FL = −
∑N

i=1
(1 −

p̂i,yi
)γ log(p̂i,yi

), where γ is a hyper-parameter. We

trained using γ ∈ {1, 2, 3}, and report it as FL in the

results.

• For DCA [13], we train on the following loss: NLL+β ·
DCA, where DCA is as defined in [13], and β is a hyper-

parameter. We train varying β ∈ {1, 5, 10, 15, 20, 25}
as performed in [13]. DCA results are reported under

the name DCA.

• We use MMCE [10], as a regularizer along with NLL. We

use the weighted MMCE loss in our experiments with

λ ∈ {2, 4}.

• For FLSD [16], we train with γ = 3.

For each of the above methods, we report the result of the

best performing trained model according to the accuracy

obtained on the validation set.

2. Dataset description

We have used the following datasets in our experiments:

1. CIFAR10 [8]: This dataset has 60, 000 color images of

size 32× 32 each, equally divided into 10 classes. The

pre-divided train set comes with 50, 000 images and

the test set has around 10, 000 images. Using the pol-

icy defined above, we have a train/val/test split having

45000/5000/10000 images respectively.

2. CIFAR100 [8]: This dataset comprises of 60, 000
colour images of size 32x32 each, but this time, equally

divided into 100 classes. The pre-divided train set again

comes with 50, 000 images and the test set has around

10, 000 images. We have a train/val/test split having

45000/5000/10000 images respectively.

3. SVHN [18] : The Street View House Number (SVHN)

is a digit classification benchmark dataset that contains

600000 32 × 32 RGB images of printed digits (from

0 to 9) cropped from pictures of house number plates.

The cropped images are centered in the digit of interest,
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but nearby digits and other distractors are kept in the

image. SVHN has comes with a training set (73257)

and a testing set (26032). We randomly sample 10% of

the training set to use as a validation set.

4. Tiny-ImageNet [4] : It is a subset of the ImageNet

dataset containing 64 × 64 RGB images. It has 200
classes with each class having 500 images. The val-

idation set contains 50 images per class. We use the

provided validation set as the test set for our experi-

ments.

5. 20 Newsgroups [11]: It is a popular text classification

dataset containing 20, 000 news articles, categorised

evenly into 20 different newsgroups based on their con-

tent.

6. Mendeley V2 [7]: Inspired from [13], we use this

medical dataset. The dataset contains OCT (optical

coherence tomography) images of retina and pediatric

chest X-ray images. However, we only use the chest

X-ray images in our experiments. The chest X-ray

images come with a pre-defined train/test split having

4273 pneumonia images and 1583 normal images of

the chest.

7. PACS dataset [12]: We use the dataset to study cali-

bration under domain shift. The dataset comprises of

a total 9991 images spread across 4 different domains

with 7 classes each. The domains are namely Photo,

Art, Sketch and Cartoon. We fine-tune the ResNet-18

model, pretrained ImageNet dataset, on the Photo do-

main using various competing techniques and test on

the other three domains to measure how calibration

holds in a domain shift. Following [12], we also divide

the training set of photo domain into 9 : 1 train/val set.

8. Rotated MNIST Dataset: This dataset is also

used for domain shift experiments. Inspired

from [21], we create 5 different test sets namely

{M15,M30,M45,M60,M75}. Domain drift is intro-

duced in each Mx by rotating the images in the MNIST

test set by x degrees counter-clockwise.

9. Segmentation Datasets- PASCAL VOC 2012 [5]:

This a segmentation dataset and consists of images

with pixel-level annotations. There are 21 classes over-

all (One background class and 20 foreground object

classes). The dataset is divided into Train (1464 im-

ages), Val (1449 images) and Test (1456 images) set.

We, however, only make use of the Train and the Val set.

Models are trained on the Train set and the evaluation

is reported on the Val set.

Figure 1. Comparison of Reliability diagrams of: (left) NLL+DCA

vs NLL+MDCA and (right) FL+DCA vs. FL+MDCA. We use ResNet-

32 trained on CIFAR10 dataset for comparison.

3. Training Procedure and Implementation

Backbone Architecture: We use ResNet [6] backbone for

most of our experiments. For training on CIFAR10, and

CIFAR100 datasets we used ResNet-32 and ResNet-56. For

SVHN we used ResNet-20 and ResNet-56. Following [13],

for Mendeley V2 dataset, we use a ResNet-50 architecture

pre-trained on ImageNet dataset [4]. We use the backbone as

a fixed feature extractor and add a 1× 1 convolutional layer

and two fully connected layers on top of the feature extractor.

Segmentation experiments make use of DeepLabV3+ [2]

based on the Xception65 [3] backbone

Train Parameters: For all our experiments we used a single

Nvidia 1080 Ti GPU. We trained CIFAR10 for a total of 160
epochs using a learning rate of 0.1, and it is reduced by a fac-

tor of 10 at the 80th and 160th epoch. Train batch size was

kept at 128 and DNN was optimized using Stochastic Gradi-

ent Descent (SGD) with momentum at 0.9 and weight decay

being 0.0005. Furthermore, we augment the images using

random center crop and horizontal flips. We use same pa-

rameters for CIFAR100, except the number of epochs, where

we train it for 200 epochs. Again learning rate is reduced

by a factor of 10, but this time it is reduced at epochs 100

and 150. For Tiny-ImageNet, we followed the same training

procedure as done by [16]. For SVHN, we keep the same

training procedure as above except the number of epochs;

we train for 100 epochs, with it getting reduced at epochs

50 and 70 with a factor of 10 yet again. We do not augment

the images when training on SVHN. We use PyTorch frame-

work for all our implementations. Our repository is inspired

from https://github.com/bearpaw/pytorch-

classification. We also take help from the official

implementation of [16] to implement some of the baseline

methods. For the segmentation experiments we make use

of the following repository: https://github.com/

LikeLy-Journey/SegmenTron. We train the segmen-

tation models for 120 epochs using SGD optimizer with a

warm-up LR scheduler. To train with focal loss, we used

γ = 3. The rest of the parameters for the optimizer and the

scheduler were kept the same as provided by the Segmen-

Tron repository.

Optimizing Hyper-parameter β for MDCA: We vary the

hyper-parameter β ∈ [0.25, 0.5, 1, 5, 10, . . . 50] in our exper-

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification
https://github.com/LikeLy-Journey/SegmenTron
https://github.com/LikeLy-Journey/SegmenTron


Figure 2. Effect of β on Accuracy and SCE (10−3) on FL+MDCA

on the ResNet-20 model trained on SVHN dataset.

iments. Figure 2 shows how calibration error and accuracy

is affected when we increase β in different model-dataset

pairs. We see a general trend that calibration is best achieved

when β is close to 1, and as we increase it, the calibration as

well as the accuracy starts to drop (accuracy decreases and

the SCE score increases).

Post-Hoc Calibration Experiments: For comparison

with post-hoc techniques, we set aside 10% of the training

data as a validation set (hold-out set) to conduct post-hoc

calibration. For Temperature Scaling (TS), we perform a

grid search between the range of 0 to 10 with a step-size of

0.1 to find the optimal temperature value that gives the least

NLL on the hold-out set. For Dirichlet Calibration (DC), we

attach a single layer neural network at the end of the DNN

and use ODIR [9] regularization on the weights of the same.

We train on the hold-out set keeping the rest of the DNN

weights frozen except the newly added layer. We again use

grid search to find the optimal hyper-parameters λ and µ
that give the least NLL on the hold-out set. We vary λ ∈
{0, 0.01, 0.1, 1, 10, 0.005, 0.05, 0.5, 5, 0.0025, 0.025, 0.25, 2.5}
and µ ∈ {0, 0.01, 0.1, 1, 10}.

Domain Shift Experiments: For PACS dataset, we use the

official PyTorch ResNet-18 model pre-trained on ImageNet

dataset. We re-initialized its last fully connected layer to

accommodate 7 classes, and finally fine-tuned on the Photo

domain. We use the SGD optimizer with same momentum

and weight decay values as done for CIFAR10/100 and de-

LC LAuxiliary Accuracy SCE (10−3) ECE (%)

ResNet-32 on CIFAR10 dataset:

Cross Entropy

None 92.54 8.68 4.25

DCA [13] 92.94 8.41 4.00

MMCE [10] 91.59 8.17 3.31

MDCA (ours) 91.85 4.63 1.69

Label Smoothing [17]

None 92.48 14.09 6.28

DCA [13] 88.69 8.14 3.44

MMCE [10] 91.92 22.49 10.07

MDCA (ours) 93.01 12.38 5.66

Focal Loss [15]

None 92.52 4.09 1.01

DCA [13] 92.65 7.50 3.49

MMCE [10] 90.76 26.41 13.38

MDCA (ours) 92.82 3.22 0.93

ResNet-20 on SVHN dataset:

Cross Entropy

None 96.14 3.43 1.64

DCA [13] 96.17 4.29 2.02

MMCE [10] 95.88 9.18 4.34

MDCA (ours) 96.33 1.46 0.43

Label Smoothing [17]

None 96.24 18.80 8.88

DCA [13] 96.55 9.80 4.46

MMCE [10] 96.11 31.75 15.50

MDCA (ours) 96.14 13.91 6.46

Focal Loss [15]

None 96.17 2.54 0.89

DCA [13] 96.35 2.12 0.44

MMCE [10] 95.83 25.01 12.79

MDCA (ours) 96.08 1.90 0.47

Table 1. Ablation to study the impact of various auxiliary losses on

two models : ResNet-32 on CIFAR10 and Resnet-20 trained model

on SVHN Dataset. Our approach exhibits least calibration error

without sacrificing on the accuracy.

scribed earlier. Training batch size was fixed at 256, and the

model was trained for 30 epochs with initial learning rate,

set at 0.01, getting reduced at epoch 20 with a factor of 10.

Training parameters are chosen such that they give the best

performing model i.e. having the maximum accuracy on the

Photo domain val set.

For Rotated MNIST, we used PyTorch framework to gen-

erate rotated images. We use the ResNet-20 model to train

on the standard MNIST train set for 30 epochs with a learn-

ing rate of 0.1 for first 20 epochs, and then with 0.01 for

the last 10 epochs. Rest of the details like batch size and

optimizer remain same as the CIFAR10/100 experiments.

We did not augment any images, and selected the training

parameters such that the model gives best accuracy on the

validation set.

For 20 Newsgroups, we train the Global Pooling Con-

volutional Network [14] using the ADAM optimizer, with

learning rate 0.001, and the default values of betas at 0.9 and

0.999 respectively. We used GloVe word embeddings [19]

to train the network. We trained the model for 50 epochs.

4. Additional Results

We report the following additional results:

1. Class-j-ECE score: In Table 3 of main manuscript we

reported the Class-j-ECE score for SVHN. In Table 6



Methods Art Cartoon Sketch Average

SCE(10−3)

NLL 6.33 17.95 15.01 13.10

LS [17] 7.80 11.95 10.88 10.21

FL [15] 8.61 16.62 10.94 12.06

Brier Score [1] 6.55 13.19 15.63 11.79

MMCE [10] 6.35 15.70 17.16 13.07

DCA [13] 7.49 18.01 14.99 13.49

FLSD [16] 8.35 13.39 13.86 11.87

Ours (FL+MDCA) 6.21 11.91 11.08 9.73

ECE (%)

Brier Score [1] 3.35 33.68 42.61 26.55

NLL 9.42 52.99 35.56 32.66

LS [17] 8.70 25.21 13.29 15.73

Focal Loss [15] 7.34 48.96 25.33 27.21

MMCE [10] 17.06 43.25 40.79 33.70

DCA [13] 13.38 55.20 37.76 35.45

FLSD [16] 8.41 34.43 30.01 24.28

Ours (FL+MDCA) 6.29 29.81 23.05 19.71

Top-1 (%) Accuracy

Brier Score [1] 59.28 24.83 28.43 37.51

NLL 59.08 21.20 28.00 36.09

LS [17] 56.35 22.01 29.88 36.08

FL [15] 52.83 17.32 26.70 32.28

MMCE [10] 60.60 29.95 20.36 36.97

DCA [13] 57.91 20.86 28.30 35.69

FLSD [16] 54.54 20.82 29.35 34.90

Ours (FL+MDCA) 63.23 27.86 23.01 38.03

Table 2. Table comparing SCE, ECE and Top-1% Accuracy val-

ues of our method against others on PACS [12] dataset when the

model is trained on Photo domain and tested on domains: Art,

Cartoon, and Sketch

here, we we provide additional results for CIFAR10.

2. Comparison with other auxiliary losses: In Table

6 in the main manuscript showed how the proposed

MDCA can be used along with NLL, LS [20], and FL

[15] to improve the calibration performance without

sacrificing the accuracy. In Tab. 1 here, we show a

similar comparison for other competitive approaches,

namely DCA [13], and MMCE [10]. Using MDCA, gives

better calibration than other competitive approaches.

3. Calibration performance under dataset drift: A

model trained using our proposed loss gives better cali-

bration under dataset drift as well. Table 4 in the main

manuscript showed SCE score comparison on PACS.

We give more detailed comparison here in Tab. 2 which

shows top 1% accuracy, ECE as well. We repeat SCE

numbers from main manuscript for completion. Tab. 3

shows the corresponding numbers for Rotated MNIST.

Just like we showed that using MDCA in conjunction

Method Clean M15 M30 M45 M60 M75 Average

SCE (%)

NLL 0.07 0.19 0.70 2.96 7.50 10.60 3.67

LS [17] 2.00 2.00 1.93 2.91 6.67 8.93 4.07

FL [15] 0.29 0.81 1.34 2.62 7.04 10.10 3.70

Brier Score [1] 0.23 0.51 1.09 2.83 6.58 9.10 3.39

MMCE [10] 2.51 4.05 5.01 4.55 5.28 5.29 4.45

DCA [13] 0.07 0.20 0.91 3.71 8.42 11.65 4.16

FLSD [16] 1.30 2.09 3.10 3.05 4.88 7.56 3.67

Ours (FL+MDCA) 0.20 0.48 0.94 2.51 6.65 9.61 3.40

ECE (%)

NLL 0.11 0.38 1.13 10.54 31.95 45.06 14.86

LS [17] 9.89 9.32 7.13 6.86 27.36 37.28 16.31

FL [15] 1.34 3.11 3.92 5.21 28.11 41.17 13.81

Brier Score [1] 0.90 2.07 2.57 5.95 25.24 38.16 12.48

MMCE [10] 4.72 15.42 23.01 18.88 10.74 6.80 13.26

DCA [13] 0.21 0.29 1.88 13.83 36.31 50.25 17.13

FLSD [16] 6.50 10.43 14.33 7.92 14.80 29.34 13.89

Ours (FL+MDCA) 0.79 2.03 2.94 6.18 25.77 39.29 12.83

Top-1 (%) Accuracy

NLL 99.61 98.79 93.38 73.82 43.24 24.07 72.15

LS [17] 99.62 98.39 92.04 69.33 39.94 22.99 70.39

FL [15] 99.63 98.20 91.87 69.95 38.67 20.83 69.86

Brier Score [1] 99.63 98.72 92.54 71.29 41.90 22.73 71.14

MMCE [10] 98.43 94.99 83.93 53.88 28.76 16.84 62.81

DCA [13] 99.60 98.36 91.51 68.34 38.32 20.93 69.51

FLSD [16] 99.67 98.79 92.77 71.17 40.17 20.84 70.57

Ours (FL+MDCA) 99.59 98.61 93.13 70.92 41.93 23.37 71.26

Table 3. Table comparing SCE, ECE and Top-1% Accuracy values

of our loss with other methods on the Rotated-MNIST dataset

trained using a ResNet-20 model.

with NLL, LS [20], and FL [15] gives best calibration

performance, we show that this remains true even for

the dataset drift case. Tab. 4 and Tab. 5 show the

comparison on Rotated MNIST and PACS datasets re-

spectively.

4. Reliability Diagrams: Fig. 2 in the main manuscript

showed reliability and confidence plots for MDCA used

with NLL and LS respectively. We show similar plots

for MDCA+FL in Fig. 3.



Domain NLL NLL+MDCA LS LS+MDCA FL FL+MDCA

SCE (%)

Clean 0.07 0.07 2.00 1.99 0.29 0.20

M15 0.19 0.19 2.00 1.99 0.81 0.48

M30 0.70 0.66 1.93 1.88 1.34 0.94

M45 2.96 3.17 2.91 2.85 2.62 2.51

M60 7.50 7.99 6.67 6.08 7.04 6.65

M75 10.60 11.17 8.93 8.82 10.10 9.61

Average 3.67 3.88 4.07 3.94 3.70 3.40

ECE (%)

Clean 0.11 0.22 9.89 9.83 1.34 0.79

M15 0.38 0.21 9.32 9.41 3.11 2.03

M30 1.13 1.31 7.13 7.38 3.92 2.94

M45 10.54 12.50 6.86 8.41 5.21 6.18

M60 31.95 35.02 27.36 25.32 28.11 25.77

M75 45.06 49.41 37.28 38.41 41.17 39.29

Average 14.86 16.45 16.31 16.46 13.81 12.83

Top-1 (%) Accuracy

Clean 99.61 99.64 99.62 99.63 99.63 99.59

M15 98.79 98.63 98.39 98.45 98.20 98.61

M30 93.38 93.23 92.04 92.54 91.87 93.13

M45 73.82 71.53 69.33 69.74 69.95 70.92

M60 43.24 41.27 39.94 41.88 38.67 41.93

M75 24.07 22.05 22.99 22.97 20.83 23.37

Average 72.15 71.06 70.39 70.87 69.86 71.26

Table 4. Table comparing SCE, ECE and Top-1% Accuracy values

of our method against others for ResNet-20 model on Rotated-

MNIST dataset. Clean denotes the original dataset, and subscript

under the ‘M’ indicates angle of rotation for each digit.

Domain NLL NLL+MDCA LS LS+MDCA FL FL+MDCA

SCE (10−3)

Art 6.33 5.10 7.80 5.70 8.61 6.21

Cartoon 17.95 16.53 11.95 12.07 16.22 11.91

Sketch 15.01 13.49 10.88 11.70 10.94 11.08

Average 13.10 11.71 10.21 9.82 12.06 9.73

ECE (%)

Art 9.42 4.99 8.70 11.80 7.34 6.29

Cartoon 52.99 47.96 25.21 22.73 48.96 29.81

Sketch 35.56 31.68 13.29 10.34 25.33 23.05

Average 32.66 28.21 15.73 14.96 27.21 19.71

Top-1 (%) Accuracy

Art 59.08 61.67 56.35 59.57 52.83 63.23

Cartoon 21.20 21.72 22.01 24.62 17.32 27.86

Sketch 28.00 26.90 29.88 26.55 26.70 23.01

Average 36.09 36.76 36.08 36.91 32.28 38.03

Table 5. Ablation comparing SCE, ECE and Top-1 Accuracy values

of models using MDCA as an auxiliary loss along with other classi-

fication losses. The numbers correspond to training a ResNet-18

model on Photo subset from PACS dataset, and testing on other

subsets of the PACS.

𝒂) 𝒃)

𝒄) 𝒅)

FL FL+MDCA

Confidence Histogram Confidence Histogram

Figure 3. Reliability diagrams (a,b) and confidence histograms (c,d)

of FL trained model compared against MDCA regularized version

(FL+MDCA). We use ResNet-32 trained on CIFAR10 dataset for

comparison.

Method
Classes

airplane automobile bird cat deer dog frog horse ship truck

Cross Entropy 0.98 0.43 1.12 1.97 0.65 1.47 0.65 0.44 0.58 0.57

Focal Loss [15] 0.38 0.23 0.69 1.08 0.39 0.91 0.37 0.34 0.25 0.24

LS [17] 1.64 1.89 1.26 1.01 1.64 1.25 1.66 1.62 1.76 1.77

Brier Score [1] 0.71 0.25 0.91 1.56 0.61 1.26 0.4 0.34 0.41 0.37

MMCE [10] 1.88 1.29 1.57 2.43 1.83 1.62 1.57 1.51 1.09 1.75

DCA [13] 0.80 0.43 1.18 1.71 0.93 1.44 0.52 0.55 0.51 0.6

FLSD [16] 0.99 1.12 0.81 1.11 0.81 1.44 0.81 0.85 0.70 1.14

Ours (FL+MDCA) 0.36 0.37 0.36 0.60 0.35 0.59 0.31 0.41 0.25 0.42

Table 6. Class-j-ECE (%) values on all ten classes for a ResNet-

32 model trained on the CIFAR10 dataset comparing different

learnable calibration methods including ours highlighted in Cyan.
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