Neural Inertial Localization
Supplementary Material

Sachini Herath! David Caruso?

ISimon Fraser University, BC, Canada

The supplementary document provides:

o Algorithmic details (Sec. 1);

e More qualitative visualization (Fig. 1 and 2);

o Failure cases (Fig. 3);

e Architecture specification (Tab. 1);

e Quantitative evaluations on re-localization task (Tab. 2);
e More ablation studies (Tab. 3).

Please also refer to our supplementary video, which
shows predicted likelihoods and motion trajectories for each
method in animtaion.

1. Algorithmic details

We discuss the details of our synthetic data generation
process and data augmentation during training, outlined in
section 5.4.

1.1. Synthetic data generation

When a floorplan image is not available, we compute
the walklable region or a floorplan (F};,4;) by 1) counting
the number of times training trajectories pass through at
each pixel; 2) clamping the count to be 2 at the maximum,;
3) applying Gaussian smoothing (o = 1.0 pixels); and 4)
binary-thresholding the map with a threshold of 0.5.

We generate a synthetic motion trajectory from the
floorplan (F},.,) by picking start and goal positions
randomly, and finding a shortest path between them, while
we define a local neighborhood system to be a 11x11 square
region.

Next, in order to make the trajectories look realistic,
we apply B-spline smoothing then solve an optimization
problem so that the trajectories pass through near the
center of corridors and passages. Note that when synthetic
trajectories are used in training, to minimize the gap
between synthetic data and real data, we also apply the B-
spline smoothing to the real trajectory before passing the
velocity vectors to the velocity branch.

B-spline smoothing: We approximate synthetic trajectory
by fitting a b-spline curve [1]. Given a trajectory p;
with timestamps ¢ € 7T, we find a smooth spline
approximation of degree 3 with smoothing condition

Chen Liu?

Yufan Chen? Yasutaka Furukawa'

2Reality Labs, Meta, Redmond, USA

5(=5.0) by “scipy.interpolate.splrep”. The b-spline knot
vector and control points of the approximated curve are k
and C.

B(kyé) :FBspline([p_;i]uT>3) (1)

Optimizing with floorplan: Given a b-spline knot vector k
and control points ¢ of the approximated curve for synthetic
data, and a walkable region, we optimize the location
of control points, ¢, using non-linear least squares to
minimize the following energy function.

argfnin Z fmap(B(k7 C;z)(t))+20 X ||B(k7 C%)(t) _p_;tH

Cm ger

where fp,qp is a function of distance from a non-walkable
pixel, which is computed by a flood-fill algorithm and
smoothed by the Gaussian function (¢ = 2.0). We sample
the smoothed spline at constant distance of 1 pixel with a
Gaussian noise (¢ = 3.0) to obtain velocity vectors and
ground-truth positions.

1.2. Data Augmentation

We further perform the following three data
augmentation tricks. First, to ensure that motion directions
are not restricted to a discrete set, we randomly rotate the
walkable region image by “scipy.ndimage.rotate” function
before generating synthetic trajectories by the shortest
path algorithm. Second, we add random perturbations to
velocity magnitude and angular rate of the input 2D velocity
vector sequence by the Gaussian function (oscqe = 0.2
pixels and o0p;qs = 0.05 radians per frame) to mimic
scaling errors in inertial navigation and IMU gyroscope
bias errors. Third we perform a random in-plane rotation on
the input velocity sequence to ensure the learned features
are invariant to the unknown starting orientation alignment.

References

[1] Paul Dierckx. Algorithms for smoothing data with periodic
and parametric splines. Computer Graphics and Image
Processing, 20(2):171-184, 1982. 1

Localization

Ground truth
(15.5 mins / 456 m)

Re-localization R?

Re-localization SE(2)

Inertial navigation
Particle Filter Learned Prior Ours (RoNIN)

Figure 1. Qualitative visualizations: For one trajectory from Office C, we show results by the four methods (columns) for one localization
and two re-localization tasks (rows). Particle filter, learned prior and CRF require a floorplan in addition to IMU input. The color gradient
(blue — red — green) encodes time. We mark the physical dimension of each sequence and report success rate (%) at distance thresholds
1, 2,4, and 6 meters.

Localization

Ground truth
(17.2 mins / 656 m)

Re-localization R?

Re-localization SE(2)

Inertial navigation
Particle Filter Learned Prior Ours (RoNIN)

Figure 2. Qualitative visualizations: For one trajectory from building B, we show results by the four methods (columns) for one localization
and two re-localization tasks (rows). Particle filter, learned prior and CRF require a floorplan in addition to IMU input. The color gradient
(blue — red — green) encodes time. We mark the physical dimension of each sequence and report success rate (%) at distance thresholds
1, 2, 4, and 6 meters.

Ours

GT

(a) discontinuities

(b) open spaces

i
' L. ¢

BT 1.,

(c) symmetries

Figure 3. Failure cases: Three common failure modes in our approach are shown with our prediction for localization task and ground-truth

(GT) trajectory segments. The color gradient (blue — red — green) encodes time.

Branch Module Layers/Operations Input Shape Output Shape
Velocity Input [n, 2, 200]
TCN [n, 2, 200] [n, 288, 200]
. Down-sample [n, 288, 200] [n, 288, 20]
TCN Velocity Compressor Positional Encoding | [n, 288, 20] [n, 432, 20]
Velocity Permute [n, 432, 20] [20, n, 432]
Branch Shared Trans. Velocity Encoder | Transformer Encoder | [20, n, 432] [20, n, 432]
Transformer Velocity Encoder Transformer Encoder | [20, n, 432] [20, n, 432]
Permute [20, n, 432] [nx20, 1, 24, 18]
. Transpose-Conv [nx20, 1, 24, 18] [nx20, 3, 211, 157]
TA-location decoder TA-Conv [nx20, 3, 211, 157] [nx20, 1, 211, 157]
Permute [nx20, 1, 211, 157] [n, 20, 211, 157]
Location input [n, 20, 211,157]
Permute [n, 20, 211, 157] [nx20, 1, 211, 157]
CNN Location Encoder Conv [nx20, 1, 211, 157] [nx20, 1, 24, 18]
Location Pen.n.ute . [nx20, 1, 24, 18] [20, n, 432]
Branch Positional Encoding [20, n, 432] [20, n, 432]
Transformer Location Decoder | Transformer Decoder | [20, n, 432], [20, n, 432] | [20, n, 432]
Permute [20, n, 432] [nx20, 1, 24, 18]
. Transpose-Conv [nx20, 1, 24, 18] [nx20, 3, 211, 157]
TA-location decoder TA—anv [nx20, 3, 211, 157] [nx20, 1, 211, 157]
Permute [nx20, 1, 211, 157] [n, 20, 211, 157]

Table 1. The input/output dimensions of our network for Building A. The tensors are of batch size n, and the location branch is shown with
maximum sequence length 20 corresponding to velocity input sequence length of 200 frames. For buildings B and C, velocity input shape
remains the same and location input/output shapes change to [n, 20, 144, 368] and [n, 20, 112, 384] resp., and the inner feature dimensions
change accordingly.

Buil- Fixed short sequence (100 m) Full test sequence run time
ding Meth. SR(%) at distance T SR(%) at A 1 SR(%) at distance T SR(%) at A 1 cpu/gpu
Im 2m 4m 6m 20° 40° Im 2m 4m 6m 20° 40° (sec) |
PF 223 432 594 663 | 60.1 715 || 18.6 419 623 68.2 | 62.1 71.8 1.475.8
A CRF 262 529 762 87.8 | 81.2 92.6 || 22.6 527 73.8 83.6 | 79.7 90.8 9.2/3.7
Ours 344 599 745 81.2 | 747 81.8 || 30.0 54.1 704 76.5 | 70.2 77.9 0.3/0.1
PF 139 343 59.7 712 | 59.1 734 || 154 39.7 582 64.1 | 57.6 71.1 38/44
B CRF 27.1 658 88.0 93.2 | 88.1 939 || 23.7 62.8 87.1 91.2 | 87.8 93.9 18.8/5.4
Ours 476 693 745 713 | 679 75.1 || 494 73.1 80.1 82.0 | 72.7 80.7 1.2/ 0.2
PF 279 440 61.6 72.1 | 27.6 474 | 253 37.1 50.6 59.0 | 263 46.1 9.0/13.3
C CRF 46.5 604 725 822|459 649 || 487 654 772 852 | 47.6 68.3 || 36.0/174
Ours 70.7 78.7 84.1 87.6 | 52.4 68.0 || 73.1 80.8 854 89.3 | 53.6 69.9 24/ 0.7
() Inertial Re-localization R?
Buil- Fixed short sequence (100 m) Full test sequence run time
ding Meth. SR(%) at distance 1 SR(%) at A 1 SR(%) at distance 1 SR(%) at A 1 cpu/gpu
Im 2m 4m 6m 20° 40° Im 2m 4m 6m 20° 40° (sec) |
PF 236 423 602 68.7 | 629 751 172 365 544 610 | 569 67.6 0.6/3.1
A LP 59 210 46.6 59.8| 550 785 48 19.8 40.1 529 | 55.1 76.0 46/03
CRF 275 550 7777 88.8 | 822 934 233 535 749 844 | 809 925 9.5/3.7
Ours 36.1 620 764 827 | 767 83.1 312 560 73.0 798| 729 81.3 0.3/0.1
PF 149 361 628 758 | 633 81.2 95 253 41.7 484 | 468 615 14744
B LP 6.6 246 61.0 738 | 622 804 2.2 9.9 269 378 | 487 70.6 1.9/0.8
CRF 29.7 712 923 963 | 91.5 97.4 237 643 871 912 | 878 939 | 18.8/5.3
Ours 476 693 745 773 | 679 751 494 73.1 80.1 82.0 | 72.7 80.7 1.270.2
PF 30.1 46.1 654 76.6 | 284 484 185 305 450 554 | 21.8 389 437127
C LP 16,6 356 584 769 304 504 6.8 158 293 412 | 18.1 324 || 145/ 7.1
CRF 52.1 67.1 779 866 | 490 69.0 || 487 654 772 85.1 | 47.6 68.8 || 36.0/174
Ours 714 793 844 877 | 5277 68.7 73.5 81.2 858 89.6 | 539 70.2 23/ 0.7

(b) Inertial Re-localization SE(2)

Table 2. Evaluation per building for re-localization task (Table 2.b of the main paper contains the average metrics across three buildings).
We compare NILoc (ours) with three methods that require a floorplan as input: Particle Filter (PF), Learned Prior (LP) and Conditional
Random Fields (CRF). We report success rate (SR) at a given error distance threshold and angle (A) threshold, per building. Run time is
the average CPU or GPU time per 1 min of motion sequence. The best and second best results per column are shown in orange and cyan,
respectively.

Velocity branch Location branch

Localization Localization | Reloc R? Reloc SE(2)

SR(%) at distance — 2m 4m 2m 4m 2m 4m | 2m 4m

w/o transformer encoder [LSTM] || 30.5 43.8 - - - - - -
w/o transformer encoder [TCN] 31.2 43.2 - - - - - -
w/o scheduled sampling 25.3 38.1 93 152 93 152 94 156
w/o synthetic data 42.4 64.5 | 104 189 | 141 25.0 | 175 29.1
Ours 52.5 72.1 || 448 62.6 | 54.1 704 | 56.0 73.0

Table 3. Ablation Study: The first two rows are results after replacing transformer encoder module with different neural architectures, in
particular LSTM and TCN. Third and fourth rows show the effectiveness of our training and data augmentation processes resp. The success
rate (%) at two distance thresholds (m) on building A are the metrics.

	. Algorithmic details
	. Synthetic data generation
	. Data Augmentation

