
Neural Inertial Localization
Supplementary Material

Sachini Herath1 David Caruso2 Chen Liu2 Yufan Chen2 Yasutaka Furukawa1
1Simon Fraser University, BC, Canada 2Reality Labs, Meta, Redmond, USA

The supplementary document provides:

• Algorithmic details (Sec. 1);
•More qualitative visualization (Fig. 1 and 2);
• Failure cases (Fig. 3);
• Architecture specification (Tab. 1);
• Quantitative evaluations on re-localization task (Tab. 2);
•More ablation studies (Tab. 3).

Please also refer to our supplementary video, which
shows predicted likelihoods and motion trajectories for each
method in animtaion.

1. Algorithmic details
We discuss the details of our synthetic data generation

process and data augmentation during training, outlined in
section 5.4.

1.1. Synthetic data generation

When a floorplan image is not available, we compute
the walklable region or a floorplan (Fmap) by 1) counting
the number of times training trajectories pass through at
each pixel; 2) clamping the count to be 2 at the maximum;
3) applying Gaussian smoothing (σ = 1.0 pixels); and 4)
binary-thresholding the map with a threshold of 0.5.

We generate a synthetic motion trajectory from the
floorplan (Fmap) by picking start and goal positions
randomly, and finding a shortest path between them, while
we define a local neighborhood system to be a 11x11 square
region.

Next, in order to make the trajectories look realistic,
we apply B-spline smoothing then solve an optimization
problem so that the trajectories pass through near the
center of corridors and passages. Note that when synthetic
trajectories are used in training, to minimize the gap
between synthetic data and real data, we also apply the B-
spline smoothing to the real trajectory before passing the
velocity vectors to the velocity branch.

B-spline smoothing: We approximate synthetic trajectory
by fitting a b-spline curve [1]. Given a trajectory ~pt
with timestamps t ∈ T , we find a smooth spline
approximation of degree 3 with smoothing condition

s(=5.0) by “scipy.interpolate.splrep”. The b-spline knot
vector and control points of the approximated curve are k
and ~c.

B(k,~c) = FBspline([~pt], T, s) (1)

Optimizing with floorplan: Given a b-spline knot vector k
and control points ~c of the approximated curve for synthetic
data, and a walkable region, we optimize the location
of control points, ~cm, using non-linear least squares to
minimize the following energy function.

argmin
~cm

∑
t∈T

fmap(B(k, ~cm)(t))+2.0×‖B(k, ~cm)(t)− ~pt‖

where fmap is a function of distance from a non-walkable
pixel, which is computed by a flood-fill algorithm and
smoothed by the Gaussian function (σ = 2.0). We sample
the smoothed spline at constant distance of 1 pixel with a
Gaussian noise (σ = 3.0) to obtain velocity vectors and
ground-truth positions.

1.2. Data Augmentation

We further perform the following three data
augmentation tricks. First, to ensure that motion directions
are not restricted to a discrete set, we randomly rotate the
walkable region image by “scipy.ndimage.rotate” function
before generating synthetic trajectories by the shortest
path algorithm. Second, we add random perturbations to
velocity magnitude and angular rate of the input 2D velocity
vector sequence by the Gaussian function (σscale = 0.2
pixels and σbias = 0.05 radians per frame) to mimic
scaling errors in inertial navigation and IMU gyroscope
bias errors. Third we perform a random in-plane rotation on
the input velocity sequence to ensure the learned features
are invariant to the unknown starting orientation alignment.

References
[1] Paul Dierckx. Algorithms for smoothing data with periodic

and parametric splines. Computer Graphics and Image
Processing, 20(2):171–184, 1982. 1

1



Figure 1. Qualitative visualizations: For one trajectory from Office C, we show results by the four methods (columns) for one localization
and two re-localization tasks (rows). Particle filter, learned prior and CRF require a floorplan in addition to IMU input. The color gradient
(blue → red → green) encodes time. We mark the physical dimension of each sequence and report success rate (%) at distance thresholds
1, 2,4, and 6 meters.



Figure 2. Qualitative visualizations: For one trajectory from building B, we show results by the four methods (columns) for one localization
and two re-localization tasks (rows). Particle filter, learned prior and CRF require a floorplan in addition to IMU input. The color gradient
(blue → red → green) encodes time. We mark the physical dimension of each sequence and report success rate (%) at distance thresholds
1, 2, 4, and 6 meters.



Figure 3. Failure cases: Three common failure modes in our approach are shown with our prediction for localization task and ground-truth
(GT) trajectory segments. The color gradient (blue → red → green) encodes time.

Branch Module Layers/Operations Input Shape Output Shape

Velocity
Branch

Velocity Input [n, 2, 200]

TCN Velocity Compressor

TCN [n, 2, 200] [n, 288, 200]
Down-sample [n, 288, 200] [n, 288, 20]
Positional Encoding [n, 288, 20] [n, 432, 20]
Permute [n, 432, 20] [20, n, 432]

Shared Trans. Velocity Encoder Transformer Encoder [20, n, 432] [20, n, 432]
Transformer Velocity Encoder Transformer Encoder [20, n, 432] [20, n, 432]

TA-location decoder

Permute [20, n, 432] [n×20, 1, 24, 18]
Transpose-Conv [n×20, 1, 24, 18] [n×20, 3, 211, 157]
TA-Conv [n×20, 3, 211, 157] [n×20, 1, 211, 157]
Permute [n×20, 1, 211, 157] [n, 20, 211, 157]

Location
Branch

Location input [n, 20, 211,157]

CNN Location Encoder
Permute [n, 20, 211, 157] [n×20, 1, 211, 157]
Conv [n×20, 1, 211, 157] [n×20, 1, 24, 18]
Permute [n×20, 1, 24, 18] [20, n, 432]
Positional Encoding [20, n, 432] [20, n, 432]

Transformer Location Decoder Transformer Decoder [20, n, 432], [20, n, 432] [20, n, 432]

TA-location decoder

Permute [20, n, 432] [n×20, 1, 24, 18]
Transpose-Conv [n×20, 1, 24, 18] [n×20, 3, 211, 157]
TA-Conv [n×20, 3, 211, 157] [n×20, 1, 211, 157]
Permute [n×20, 1, 211, 157] [n, 20, 211, 157]

Table 1. The input/output dimensions of our network for Building A. The tensors are of batch size n, and the location branch is shown with
maximum sequence length 20 corresponding to velocity input sequence length of 200 frames. For buildings B and C, velocity input shape
remains the same and location input/output shapes change to [n, 20, 144, 368] and [n, 20, 112, 384] resp., and the inner feature dimensions
change accordingly.



Buil-
ding Meth.

Fixed short sequence (100 m) Full test sequence run time
cpu/gpu
(sec) ↓

SR(%) at distance ↑ SR(%) at A ↑ SR(%) at distance ↑ SR(%) at A ↑
1m 2m 4m 6m 20◦ 40◦ 1m 2m 4m 6m 20◦ 40◦

PF 22.3 43.2 59.4 66.3 60.1 71.5 18.6 41.9 62.3 68.2 62.1 71.8 1.4 / 5.8
CRF 26.2 52.9 76.2 87.8 81.2 92.6 22.6 52.7 73.8 83.6 79.7 90.8 9.2 / 3.7A
Ours 34.4 59.9 74.5 81.2 74.7 81.8 30.0 54.1 70.4 76.5 70.2 77.9 0.3 / 0.1
PF 13.9 34.3 59.7 71.2 59.1 73.4 15.4 39.7 58.2 64.1 57.6 71.1 3.8 / 4.4
CRF 27.1 65.8 88.0 93.2 88.1 93.9 23.7 62.8 87.1 91.2 87.8 93.9 18.8 / 5.4B
Ours 47.6 69.3 74.5 77.3 67.9 75.1 49.4 73.1 80.1 82.0 72.7 80.7 1.2 / 0.2
PF 27.9 44.0 61.6 72.1 27.6 47.4 25.3 37.1 50.6 59.0 26.3 46.1 9.0 / 13.3
CRF 46.5 60.4 72.5 82.2 45.9 64.9 48.7 65.4 77.2 85.2 47.6 68.3 36.0 / 17.4C
Ours 70.7 78.7 84.1 87.6 52.4 68.0 73.1 80.8 85.4 89.3 53.6 69.9 2.4 / 0.7

(a) Inertial Re-localization R2

Buil-
ding Meth.

Fixed short sequence (100 m) Full test sequence run time
cpu/gpu
(sec) ↓

SR(%) at distance ↑ SR(%) at A ↑ SR(%) at distance ↑ SR(%) at A ↑
1m 2m 4m 6m 20◦ 40◦ 1m 2m 4m 6m 20◦ 40◦

PF 23.6 42.3 60.2 68.7 62.9 75.1 17.2 36.5 54.4 61.0 56.9 67.6 0.6 / 3.1
LP 5.9 21.0 46.6 59.8 55.0 78.5 4.8 19.8 40.1 52.9 55.1 76.0 4.6 / 0.3
CRF 27.5 55.0 77.7 88.8 82.2 93.4 23.3 53.5 74.9 84.4 80.9 92.5 9.5 / 3.7A

Ours 36.1 62.0 76.4 82.7 76.7 83.1 31.2 56.0 73.0 79.8 72.9 81.3 0.3 / 0.1
PF 14.9 36.1 62.8 75.8 63.3 81.2 9.5 25.3 41.7 48.4 46.8 61.5 1.4 / 4.4
LP 6.6 24.6 61.0 73.8 62.2 80.4 2.2 9.9 26.9 37.8 48.7 70.6 1.9 / 0.8
CRF 29.7 71.2 92.3 96.3 91.5 97.4 23.7 64.3 87.1 91.2 87.8 93.9 18.8 / 5.3B

Ours 47.6 69.3 74.5 77.3 67.9 75.1 49.4 73.1 80.1 82.0 72.7 80.7 1.2 / 0.2
PF 30.1 46.1 65.4 76.6 28.4 48.4 18.5 30.5 45.0 55.4 21.8 38.9 4.3 / 12.7
LP 16.6 35.6 58.4 76.9 30.4 50.4 6.8 15.8 29.3 41.2 18.1 32.4 14.5 / 7.1
CRF 52.1 67.1 77.9 86.6 49.0 69.0 48.7 65.4 77.2 85.1 47.6 68.8 36.0 / 17.4C

Ours 71.4 79.3 84.4 87.7 52.7 68.7 73.5 81.2 85.8 89.6 53.9 70.2 2.3 / 0.7
(b) Inertial Re-localization SE(2)

Table 2. Evaluation per building for re-localization task (Table 2.b of the main paper contains the average metrics across three buildings).
We compare NILoc (ours) with three methods that require a floorplan as input: Particle Filter (PF), Learned Prior (LP) and Conditional
Random Fields (CRF). We report success rate (SR) at a given error distance threshold and angle (A) threshold, per building. Run time is
the average CPU or GPU time per 1 min of motion sequence. The best and second best results per column are shown in orange and cyan,
respectively.

Velocity branch Location branch
Localization Localization Reloc R2 Reloc SE(2)

SR(%) at distance→ 2m 4m 2m 4m 2m 4m 2m 4m
w/o transformer encoder [LSTM] 30.5 43.8 - - - - - -
w/o transformer encoder [TCN] 31.2 43.2 - - - - - -
w/o scheduled sampling 25.3 38.1 9.3 15.2 9.3 15.2 9.4 15.6
w/o synthetic data 42.4 64.5 10.4 18.9 14.1 25.0 17.5 29.1
Ours 52.5 72.1 44.8 62.6 54.1 70.4 56.0 73.0

Table 3. Ablation Study: The first two rows are results after replacing transformer encoder module with different neural architectures, in
particular LSTM and TCN. Third and fourth rows show the effectiveness of our training and data augmentation processes resp. The success
rate (%) at two distance thresholds (m) on building A are the metrics.


	. Algorithmic details
	. Synthetic data generation
	. Data Augmentation


