
Supplementary Material
In this supplementary file, we provide additional infor-

mation about our model, implementation details, experi-
mental results, and qualitative examples. Specifically, Sec-
tion A provides additional implementation details, Sec-
tion B provides additional model details, Section C pro-
vides additional ablations of our approach, Section D pro-
vides more experiment results, and we show qualitative vi-
sualizations to demonstrate our approach in Section E.

A. Additional Implementation Details
We add ORViT to multiple existing transformer

models Mformer (MF) [65], MViT [30], and Times-
Former [7]. These are all implemented based on the Slow-
Fast [21] library (available at https://github.com/
facebookresearch/SlowFast), and we implement
ORViT based on this repository. Next, we elaborate on how
we extract the object regions, and for each dataset, we add
additional implementation details.

A.1. Detector and Tracker

Detector. In all action recognition datasets we used Faster
R-CNN detector [31,67] with ResNet-50 backbone [32] and
Feature Pyramid Network (FPN) [59] that is pre-trained on
the MS COCO [60] dataset. We used the Detectron2 [86]
implementation. In SSv2, the detector is finetuned using the
bounding boxes annotation. During finetuning the class cat-
egories are hand and object. For AVA, we used the provided
detection boxes for the spatio-temporal action detection task
that were first obtained by Faster-RCNN pre-trained over
MS COCO and then fine-tuned on AVA, as in [21, 84]. We
set the number of objects in our model to 4 in SSv2 and
EK100, 6 in AVA, and 10 in Diving48. If fewer objects are
presented, we set the object coordinates with a zero vector.
These numbers were chosen by taking the max number of
objects (after removing the outliers) per video (as induced
by the tracker output) across all videos in the training set.
Tracker. Once we have the detector results, we apply
multi-object tracking to find correspondence between the
objects in different frames. We use SORT [8]: a simple
tracker implemented based on Kalman Filter [43] and the
Hungarian matching algorithm (KM) [50]. At each step,
the Kalman Filter predicts plausible instances in the cur-
rent frame based on previous tracks. Next, the predictions
are matched with single-frame detections by the Hungarian
matching algorithm. It is important to note that the tracker
does not require any training and does not use any additional
data. If an object does not appear in one of the frames, we
set the coordinates in these frames to zeros. We provide
some stats about the accuracy of the tracking step. Based
on two consecutive frames of SSv2, SORT yields an 90.1%
exact match between boxes.

Choosing the O on each dataset. We mentioned that O is
set to the maximum number of objects per video (generated
by the tracker) across all videos in the training set. In addi-
tion, we also tested an approach that does not require setting
O ahead of time: for each batch take the maximum number
of objects in any clip in the batch, and pad all clips to this
number. This results in a very similar performance (-0.1%).
This padding approach reduces the pre-processing step of
finding the numbers for any dataset by choosing a fixed and
large enough number. We also measured the inference run-
time (milliseconds per clip) with and without SORT, and it
increased by x1.18 (from 60.9ms to 71.6ms). Additionally,
the object tokens add x1.03 FLOPS and x1.05 run-time.

A.2. Something-Something v2

Dataset. The SomethingElse [26] contains 174 action cat-
egories of common human-object interactions. We follow
the official splits from [26].
Optimization details. For the standard SSv2 [63] dataset,
we trained 16 frames with sample rate 4 and batch-size
48 on 8 RTX 3090 GPUs. We train our network for 35
epochs with Adam optimizer [47] with a momentum of 0.9
and Gamma 0.1. Following [65], we use lr = 5e − 5
with ×10 decay steps at epochs 0, 20, 30. Additionally,
we used Automatic Mixed Precision, which is implemented
by PyTorch. We initialize from a Kinetics-400 pre-trained
model [46]. For the ORViT MF-L model, we fine-tuned
from the SSv2 pre-trained model provided by [65] and train
with 32 frames. The optimization policy is similar to the
above, except we used a different learning rate: 1e − 5 for
the pre-trained parameters, and 1e − 4 for the ORViT pa-
rameters.

For the compositional action recognition task, we trained
on the SomethingElse splits [63]. We train with a batch size
of 32 and a learning rate of 3e− 5.
Regularization details. We use weight decay of 0.05, a
dropout [36] of 0.5 before the final classification, dropout
of 0.3 after the ORViT block, and DropConnect [37] with
rate 0.2.
Training details. We use a standard crop size of 224, and
we jitter the scales from 256 to 320. Additionally, we use
RandAugment [14] with maximum magnitude 20 for each
frame separately.
Inference details. We take 3 spatial crops per single clip
to form predictions over a single video in testing as done in
[65].

A.3. EpicKitchens100

Dataset. EK100 [16] contains 700 egocentric videos of
daily kitchen activities. This dataset includes 300 noun and
97 verb classes, and we report verb, noun, and action top-
1 accuracy, while the highest-scoring of the verb and noun
pairs constitutes the action label.



Optimization details. We trained over videos of 16 frames
with sample rate 4 and batch-size 16 on 8 Quadro RTX 8000
GPUs. We train our network for 35 epochs with Adam op-
timizer [47] with a momentum of 0.9 and Gamma 0.1. Fol-
lowing [65], we use lr = 5e − 5 with ×10 decay steps at
epochs 0, 30, 40. Additionally, we used Automatic Mixed
Precision, which is implemented by PyTorch. We initialize
from a Kinetics-400 pre-trained model [46].
Training details. We use crop size of 336 for the
ORViT MF-HR. We jitter the scales from 384 to 480. Addi-
tionally, we use RandAugment [14] with maximum magni-
tude 20.
Inference details. We take 3 spatial crops with 10 differ-
ent clips sampled randomly to aggregate predictions over a
single video in testing.

A.4. Diving48

Dataset. Diving48 [54] contains 16K training and 3K test-
ing videos spanning 48 fine-grained diving categories of
diving activities. For all of these datasets, we use standard
classification accuracy as our main performance metric.
Optimization details. We trained over videos of 32 frames
with sample rate 8 and batch-size 8 on 8 Quadro RTX 8000
GPUs. We train our network for 35 epochs with Adam op-
timizer [47] with a momentum of 0.9 and Gamma 0.1. We
use lr = 3.75e−5 with ×10 decay steps at epochs 0, 20, 30.
Additionally, we used Automatic Mixed Precision, which is
implemented by PyTorch. We initialize from a Kinetics-400
pre-trained model [46].
Training details. We use a standard crop size of 224 for the
standard model and jitter the scales from 256 to 320. Ad-
ditionally, we use RandomFlip augmentation. Finally, we
sampled the T frames from the start and end diving annota-
tion time, followed by [97].
Inference details. We take 3 spatial crops per single clip
to form predictions over a single video in testing same as
in [7].
Object-Dynamics Module. As we show in Table 5d, we
compared different self-attention mechanisms, and the stan-
dard self-attention usually performed better. However, we
observe a slight improvement when we perform a trajectory
self-attention [65] instead of the standard self-attention.

A.5. AVA

Architecture. SlowFast [21] and MViT [30] are using a
detection architecture with a RoI Align head on top of the
spatio-temporal features. We followed their implementa-
tion to allow a direct comparison. Next we elaborate on
the RoI Align head proposed in SlowFast [21]. First, we
extract the feature maps from our ORViT MViT model by
using the RoIAlign layer. Next, we take the 2D proposal at
a frame into a 3D RoI by replicating it along the temporal
axis, followed by a temporal global average pooling. Then,

we max-pooled the RoI features and fed them to an MLP
classifier for prediction.
Optimization details. To allow a direct comparison, we
used the same configuration as in MViT [30]. We trained
16 frames with sample rate 4, depth of 16 layers and batch-
size 32 on 8 RTX 3090 GPUs. We train our network for 30
epochs with an SGD optimizer. We use lr = 0.03 with a
weight decay of 1e − 8 and a half-period cosine schedule
of learning rate decaying. We use mixed precision and fine-
tune from an MViT-B, 16× 4 pre-trained model.
Training details. We use a standard crop size of 224 and we
jitter the scales from 256 to 320. We use the same ground-
truth boxes and proposals that overlap with ground-truth
boxes by IoU > 0.9 as in [21].
Inference details. We perform inference on a single clip
with 16 frames. For each sample, the evaluation frame is
centered in frame 8. We use a crop size of 224 in test time.
We take 1 spatial crop with 10 different clips sampled ran-
domly to aggregate predictions over a single video in test-
ing.

A.6. Few Shot Compositional Action Recognition

We also evaluate on the few-shot compositional action
recognition task in [63]. For this setting, we have 88 base
action categories and 86 novel action categories. We train
on the base categories (113K/12K for training/validation)
and finetune on few-shot samples from the novel categories
(for 5-shot, 430/50K for training/validation; for 10-shot,
860/44K for training/validation).

A.7. SomethingElse

Dataset. The SomethingElse [63] contains 174 action cate-
gories with 54,919 training and 57,876 validation samples.
The proposed compositional [63] split in this dataset pro-
vides disjoint combinations of a verb (action) and noun (ob-
ject) in the training and testing sets. This split defines two
disjoint groups of nouns {A,B} and verbs {1, 2}. Given the
splits of groups, they combine the training set as 1A+ 2B,
while the validation set is constructed by flipping the com-
bination into 1B + 2A. In this way, different combinations
of verbs and nouns are divided into training or testing splits.
Optimization details. We trained 16 frames with sample
rate 4 and batch-size 32 on 8 RTX 3090 GPUs. We train
our network for 35 epochs with Adam optimizer [47] with
a momentum of 0.9 and Gamma 0.1. We use lr = 3e −
5 with ×10 decay steps at epochs 0, 20, 30. Additionally,
we used Automatic Mixed Precision, which is implemented
by PyTorch. We initialize from a Kinetics-400 pre-trained
model [46].
Regularization details. We use weight decay of 0.05, a
dropout [36] of 0.5 before the final classification, dropout
of 0.3 after the ORViT block, and DropConnect [37] with
rate 0.2.



(a) Streams

Model Top-1 Top-5 GFLOPs (109) Param (106)

Baseline 60.2 85.5 ×1 (369.5) ×1 (109)
+ Object-Region Attention 67.4 89.8 ×1.03 (382) ×1.02 (111)
+ Object-Dynamics Module 69.7 91.0 ×1.1 (405) ×1.36 (148)

(b) Blocks Ablation

Layers Top-1 Top-5 GFLOPs (109) Param (106)

Baseline 60.2 85.8 ×1 (369.5) ×1 (109)
2 68.9 90.4 ×1.03 (381) ×1.12 (122)
7 67.8 89.5 ×1.03 (381) ×1.12 (122)
11 66.8 89.3 ×1.03 (381) ×1.12 (122)
2, 7 69.3 90.6 ×1.06 (393) ×1.24 (135)
2, 7, 11 69.7 91.0 ×1.1 (405) ×1.36 (148)

(c) Object-Region Attention

Model Top-1 Top-5

Baseline 60.2 85.8
Ours /w Joint attention 68.9 90.4
Ours /w Divided attention 69.3 90.6
Ours /w Trajectory attention 69.7 91.0

(d) Object-Dynamic Module

Model Top-1 Top-5

GCN 67.7 89.8
Trajectory attention 69.4 90.5
Self-attention 69.7 91.0

(e) Components

Layers Top-1 Param

Baseline 80.0 ×1 (121)
ORViT [:12] 85.4 ×1.01 (122)
ORViT [:2] 86.8 ×1.01 (122)
ORViT [:2] + ODM 87.5 ×1.11 (134)
ORViT [:2, 7, 11] + ODM 88.0 ×1.32 (160)

Table 5. Ablations. Evaluation of different model ablations and baselines on the “SomethingElse” split (Tables (a-d) see text). We report
pretrain, param (106), GFLOPS (109), and top-1 and top-5 video action recognition accuracy. Table (e) reports ablations on the Diving
dataset.

Training details. We use a standard crop size of 224, and
we jitter the scales from 256 to 320.
Inference details. We take 3 spatial crops per single clip to
form predictions over a single video in testing.

B. Additional Model details

B.1. Object-Region Attention

As explained in section 3.2, there are two inputs to the
ORViT block. The first is the output of the preceding trans-
former block, represented as a set of spatio-temporal tokens
X ∈ RTHW×d. The second input is a set of bounding boxes
for objects across time, denoted by B ∈ RTO×4.
Object-Region Attention. Given the patch token features
X and the boxes B, we use RoIAlign [31] layer, which uses
the patch tokens X and box coordinates B to obtain object
region crops. This is followed by max-pooling and an MLP.
To these features we add a learnable object-time position
encoding P ∈ RTO×d to encode the positional object infor-
mation. We also use a coordinate embedding by applying
an MLP on the boxes coordinates, resulting in L ∈ Rd:

L := MLP(B) (4)

where B ∈ RT×O×d is the boxes coordinates. This leads
to an improved object features:

O := MLP(MaxPool(RoIAlign(X,B))) + L+ P (5)

where the token features are X ∈ RTHW×d. We pass
these features into the self-attention layers as explained in
the “Object-Region attention” subsection in the main paper.

C. Additional Ablations

We perform an ablation study of each of the components
in Table 5 to show the effectiveness of the different com-
ponents of our model. All ablations are on the Somethin-
gElse [63] dataset and we use Mformer (MF) as the base-
line architecture for ORViT unless stated otherwise. We
also note that we refer to the “Object-Dynamics Module”
as ODM stream.
Contribution of appearance and motion streams. In Ta-
ble 5a, we show the “Object-Region Attention” is an im-
portant factor for the improvement, responsible for a 7.2%
gain improvement, with less than 2% additional parame-
ters over MF (only 2M parameters addition compared to
the baseline). This highlights our contribution that object
interactions are indeed crucial for video transformers. Ad-
ditionally, adding trajectory information with coordinates
in the “Object-Dynamics Module” (ODM) improved by an-
other 2.3% but with a cost of 36% additional parameters.
We show later (see in Section D.1) that we can reduce the
ODM size with smaller dimensions.
ORViT blocks. In Table 5b, we show which layers are most
important for adding the ORViT block. The experiments
show that adding this information at the network’s begin-
ning, middle, and end is the most effective (layer 2, 7, 11).
This experiment demonstrates that it is important to fuse
object-centric representations starting from early layers and
propagate them into the transformer-layers, thus affecting
the spatio-temporal representations throughout the network.
Different self-attention in “Object-Region Attention”.
In Table 5c, we compared different self-attention mecha-
nisms (as defined in [65]): joint space-time, divided space-
time, and trajectory attention to the MF baseline, which uses
trajectory attention in all layers. We observed that trajectory



Dataset Model ODM Dimension Top-1 Top-5 GFLOPs (109) Param (106)

SomethingElse

Baseline - 60.2 85.8 ×1 (369.5) ×1 (109)

ORViT
128 68.7 90.3 ×1.03 (382) ×1.03 (112)
256 68.9 90.5 ×1.04 (383) ×1.05 (114)
768 69.7 91.0 ×1.1 (405) ×1.36 (148)

SSv2

Baseline - 66.5 90.1 ×1 (369.5) ×1 (109)

ORViT
128 67.2 90.4 ×1.03 (382) ×1.03 (112)
256 67.3 90.5 ×1.04 (383) ×1.05 (114)
768 67.9 90.5 ×1.1 (405) ×1.36 (148)

Table 6. A light-weight version of ORViT.

attention is slightly better. However, it can be seen that our
object region approach is not sensitive to these choices, in-
dicating that the generic approach is the main reason for the
observed improvements.
Replacing ORViT with Trajectory Attention. We ob-
serve that joint and divided self-attention layers [2, 7] have
similar results to the trajectory attention [65], as seen
in Table 5c. However, we would like to demonstrate
that trajectory attention is not the main reason for the im-
provement when using ORViT with TimeSformer [7] or
MViT [30]. Thus, we replace our ORViT with a standard
trajectory attention on the Diving48 and AVA datasets. The
top1 accuracy on Diving48 are improved by 4.5% (from
80.0 to 84.5) with trajectory attention, while using our
ORViT+TimeSformer achieves 88.0 (3.5% improvements
on top of that). The MAP on AVA are the same as the
baseline with trajectory attention (25.5), while using our
ORViT+MViT-B achieves 26.6 (1.1 improvements on top
of the baseline). We note that our MF is the baseline on
EK100, SSv2, and SomethingElse, and therefore the trajec-
tory attention is already part of the model, and hence this
demonstration is not needed.
Processing trajectory information. In Table 5d, we
compared our self-attention (see “Object-Dynamics Mod-
ule” in Section 3.2) with other standard baseline models:
GCN [48] and trajectory self-attention [65]. For the GCN,
we use a standard implementation with 2 hidden layers,
while for the trajectory attention, we treat the O objects
as the spatial dimension. We can see that self-attention
is slightly better than trajectory self-attention (+0.3%) and
significantly better than GCN (+2.0%).
Components on Diving48. Following our components ab-
lations in Table 4a, we also validate our hypothesis on the
Diving48 dataset. We used the TimeSformer [7] trained on
videos of 32 frames as a baseline for a fair comparison. It
can be seen that a single layer version of the model already
results in considerable improvement (85.4%) and that it is
important to apply it in the earlier layers of transformers
than at the end (86.8% compared to 85.4%). Additionally,
the “Object-Dynamics Module” improves performance to
87.5%. Finally, multiple applications of the layer further

improve performance to 88.0%.
Box Position Encoder. Our “Box Position Encoder” trans-
forms from a tensor of size TO to size THW . Our imple-
mentation of this transformation uses box information so
that each object is mapped to the “correct” region in space.
A simpler approach would have been to expand the shape
of TO to THW without using boxes. We refer to the latter
as a standard tensor expansion. Comparing the two meth-
ods, we find out that our approach obtains 69.7 compared to
68.4, showing that our box-based encoding performs better.
Combine the two streams in ORViT Block. As part of
the ORViT block, we examined other operations to combine
the two streams of information. We explored the following
methods: element-wise multiplication, gating (with conv),
and our simple sum. The results on SomethingElse are 68.8,
68.7, and 69.7, respectively. In this case, our simple sum is
superior to the other methods.
T × O learnable embeddings. We observe a small differ-
ence when experimenting with T ×O and separate T and O
embeddings (69.6 Vs. 69.7) on the SomethingElse dataset.

D. Additional Experiments
Here we present additional experiments, including

demonstrating a lightweight version of the “Object-
Dynamics Module” that significantly reduces the model pa-
rameters without losing significant performance and com-
plete results on the standard action recognition task.

D.1. Light-weight ORViT

In Table 5a, we show that the “Object-Dynamics Mod-
ule” improves by 2.3% the top-1 accuracy with an addi-
tional 39M parameters (148M Vs. 109M). We would like to
demonstrate that model size can be significantly decreased,
incurring a small performance loss. Most the parameters
added by ORViT over the baseline MF are in the ODM, and
thus it is possible to use a smaller embedding dimension in
ODM. Here, we present a light-weight version of the mod-
ule that reduces the embedding dimensions without losing
significant accuracy. See Table 6.

As mentioned in the main paper (see Section 3), we use
B̃ for the coordinate embeddings in the “Object-Dynamics



Module”. We observe that reducing the dimension of the
coordinate embeddings (B̃) from 768 to 256 has little im-
pact on the action accuracy in SSv2 (67.9% Vs. 67.3%) and
SomethingElse (69.7% Vs. 68.9%), although having only
114M model parameters (an addition of 5M parameters to
the MF baseline that has 109M). Indeed this indicates that
our main approach is the main reason for the observed im-
provements and not necessarily the addition of parameters.

D.2. Standard Action Recognition Results

We next report in Table 7 the full results table for the
standard action recognition task, including extra models and
details, which were not included in the main paper.

Additionally, we add a light version of ORViT for each
dataset. This version use embedding dimension of 256 in
the “Object-Dynamics Module”, as stated in Section D.1.
In SSv2, the ORViT-Light model improves the MF base-
line by 0.8 at the cost of additional 5M parameters (5%
more parameters), while the ORViT model (non-light ver-
sion) improves by 1.4% at the cost of additional 39M pa-
rameters (36% more parameters). In Diving48, the ORViT-
Light model improves the TimeSformer baseline by 6.8 at
the cost of additional 5M parameters (3% more parame-
ters), while the ORViT model (non-light version) improves
by 8% at the cost of additional 39M parameters (32% more
parameters). In EK100, the ORViT-Light model improves
the MF-HR baseline by 1.6, 1.5, 0.2 (A, V, N) at the cost of
additional 5M parameters (5% more parameters), while the
ORViT model (non-light version) improves by 1.2, 1.4, 0.2
at the cost of additional 39M parameters (36% more pa-
rameters). We note that the ORViT-Light even outperforms
the non-light version (1.6 Vs. 1.2), demonstrating the object
movement is less significant in this data.

Last, we separately evaluated the accuracy on Kinetics-
400 with ORViT MViT-B 16x4 and noticed that it improved
by +2.0% over MViT-B 16x4.

E. Qualitative Visualizations
To provide insight into the inner representation of ORViT

we provide further visualization next. See Figure 5 and Fig-
ure 6. In Figure 5, we visualize the attention map of the CLS
token on all spatial tokens. It can be seen that object-regions
indeed affect these spatial maps. For example, “Tearing
something into two pieces” (top left corner) demonstrates
that ORViT+MF successfully separates the two pieces of the
paper, while the MF baseline does not. Next, in Figure 6 we
visualize the attention allocated to each of the object keys.
It can be seen that the object keys in ORViT indeed affect
their corresponding spatial tokens.



Table 7. Comparison to the state-of-the-art on video action recognition. We report pretrain, param (106), GFLOPS (109) and top-1
(%) and top-5 (%) video action recognition accuracy on SSv2. On Epic-Kitchens100 (EK100), we report top-1 (%) action (A), verb (V),
and noun (N) accuracy. On Diving48 we report pretrain, number of frames, param (106) and top-1 (%) video action recognition accuracy.
Difference between baselines (MF/MF-L for SSv2, TimeSformer for Diving48, MF-HR for EK100) and ORViT is denoted by (+X). We
denote methods that do not use bounding boxes with †.

(a) Something–Something V2

Model Pretrain Top-1 Top-5 GFLOPs×views (109) Param (106)

SlowFast, R50† K400 61.7 87.0 65.7×3×1 34.1
SlowFast, R101† K400 63.1 87.6 106×3×1 53.3
TSM† K400 63.4 88.5 62.4×3×2 42.9
STM† IN-1K 64.2 89.8 66.5×3×10 -
MSNet† IN-1K 64.7 89.4 67×1×1 24.6
TEA† IN-1K 65.1 - 70×3×10 -
bLVNet† IN-1K 65.2 90.3 128.6×3×10 -

VidTr-L† IN-21K+K400 60.2 - 351×3×10 -
TimeSformer-L† IN-21K 62.5 - 1703×3×1 121.4
ViViT-L† IN-21K+K400 65.4 89.8 3992×4×3 -
MViT-B, 32† K400 67.1 90.8 170×3×1 36.6
MViT-B, 64† K400 67.7 90.9 455×3×1 36.6
MViT-B, 32† K600 67.8 91.3 170×3×1 36.6
MViT-B, 64† K600 68.7 91.5 236×3×1 53.2

MF† IN-21K+K400 66.5 90.1 369.5 × 3 × 1 109
MF-L† IN-21K+K400 68.1 91.2 1185.1 × 3 × 1 109

MF+STRG IN+K400 66.1 90.0 375 × 3 × 1 117
MF+STIN IN+K400 66.5 89.8 375.5 × 3 × 1 111
MF+STRG+STIN IN+K400 66.6 90.0 375.5 × 3 × 1 119

ORViT MF-Light (Ours) IN-21K+K400 67.3 (+0.8) 90.5 (+0.4) 383 × 3 × 1 114 (+5%)
ORViT MF (Ours) IN-21K+K400 67.9 (+1.4) 90.5 (+0.4) 405 × 3 × 1 148 (+36%)
ORViT MF-L (Ours) IN-21K+K400 69.5 (+1.4) 91.5 (+0.3) 1259 × 3 × 1 148 (+36%)

(b) Diving48

Model Pretrain Frames Top-1 Params (106)

I3D† K400 8 48.3 -
TSM† ImageNet 3 51.1 42.9
TSN† ImageNet 3 52.5 -
GST-50† ImageNet 8 78.9 -
ST-S3D† K400 8 50.6 -

SlowFast, R101† K400 16 77.6 53.3
TimeSformer† IN-21K 16 74.9 121
TimeSformer-HR† IN-21K 16 78.0 121
TimeSformer-L† IN-21K 96 81.0 121
TQN† K400 ALL 81.8 -

TimeSformer† IN-21K 32 80.0 121
TimeSformer + STIN IN-21K 32 81.0 123
TimeSformer + STRG IN-21K 32 78.1 129
TimeSformer + STRG + STIN IN-21K 32 83.5 132

ORViT TimeSformer-Light (Ours) IN-21K 32 86.8 (+6.8) 126 (+3%)
ORViT TimeSformer (Ours) IN-21K 32 88.0 (+8.0) 160 (+32%)

(c) Epic-Kitchens100

Method Pretrain A V N Params (106)

TSN† IN-1K 33.2 60.2 46.0 -
TRN† IN-1K 35.3 65.9 45.4 -
TBN† IN-1K 36.7 66.0 47.2 -
TSM† IN-1K 38.3 67.9 49.0 -
SlowFast† K400 38.5 65.6 50.0 -

TimeSformer† IN-21K 32.9 55.8 50.1 121
ViViT-L IN-21K+K400 44.0 66.4 56.8 -
MF† IN-21K+K400 43.1 66.7 56.5 109
MF-L† IN-21K+K400 44.1 67.1 57.6 109
MF-HR† IN-21K+K400 44.5 67.0 58.5 109

MF-HR + STIN IN-21K+K400 44.2 67.0 57.9 111
MF-HR + STRG IN-21K+K400 42.5 65.8 55.4 117
MF-HR + STRG + STIN IN-21K+K400 44.1 66.9 57.8 119

ORViT MF-HR IN21K+K400 45.7 (+1.2) 68.4 (+1.4) 58.7 (+.2) 148 (+36%)
ORViT MF-HR-Light IN21K+K400 46.1 (+1.6) 68.5 (+1.5) 58.7 (+.2) 114 (+5%)



ORViT-
Mformer

Mformer

“Tearing something into two pieces” “Stuffing something into something”

“Turning the camera left while filming something”

ORViT-
Mformer

Mformer

“Putting something that can't roll onto a 
slanted surface, so it stays where it is”

Figure 5. Attention Maps comparison between the ORViT+MF and the MF on videos from the SSv2 dataset. The visualization shows the
attention maps corresponding to the CLS query.



“Dropping something behind something”

BOX
0

BOX
1

BOX
2

“Moving something and something away 
from each other”

BOX
0

BOX
1

BOX
2

Figure 6. Object contribution to the patch tokens. For each object token, we plot the attention weight given by the patch tokens,
normalized over the patch tokens.


