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Figure 1. DSO (left), ORB-SLAM (center) and EDS (right) camera trajectory for sequence desk in the dataset from [1] at 20 FPS.

20 FPS 10 FPS 7 FPS 5 FPS

DSO* DSO ORB SLAM* EDS (ours) DSO* DSO ORB SLAM* EDS(ours) DSO* DSO ORB SLAM* EDS(ours) DSO* DSO ORB SLAM* EDS(ours)

Input F F F E+F F F F E+F F F F E+F F F F E+F

bin 1.1 1.2 2.4 1.1 1.8 1.8 2.4 1.8 3.5 2.5 2.4 2.5 16.9 4.8 2.5 2.6

boxes 2.0 2.0 3.9 2.1 13.5 3.1 3.9 3.8 14.8 14.6 3.9 5.0 14.8 14.6 7.0 5.8

desk 10.0 10.0 3.8 1.5 13.4 9.1 3.8 3.4 21.1 16.2 7.8 4.7 21.6 19.2 9.3 5.0

monitor 0.9 0.9 3.1 1.0 3.9 1.5 10.6 2.3 26.5 12.1 10.9 2.5 28.0 27.1 10.3 8.0

Table 1. Performance at different frame rates in terms of Absolute Trajectory Error (RMS) [t: cm]. Data from [1].

Overview

In this supplementary material we present:

• Additional details on the low frame rate experiments

(Sec. 1).

• Qualitative results about the sensitivity study in depth

inaccuracies (Sec. 2).

• Our beamsplitter device and two additional experi-

ments recorded with it (Sec. 3).

• A novel dataset with high quality events & RGB

frames recorded with the beamsplitter device to foster

research on the topic (Sec. 4).

• A more thorough discussion of limitations (Sec. 5).

1. Low Frame Rate Experiments

Table 1 shows the numerical values in the low frame rate

experiment, used for plotting Fig. 5 in the main paper. The

values shows that EDS performs the best when the number

of frames decreases. Direct methods are less accurate than

indirect methods at a lower frame rate (FPS). However at a

higher frame rate direct methods use more information from

the scene; achieving a higher accuracy.

Among all sequences in dataset [1], desk has the most

challenging camera motions. In this scenario events excel

and help standard frame-based methods. This is also shown

in the results (see Tab. 1) where EDS outperforms previ-

ous frame-based methods at any given frame rate. Figure 1

shows the trajectories of DSO, ORB-SLAM and EDS for

the desk sequence. It is qualitatively visible how events en-

hance standard direct methods guiding the camera pose and

producing a more accurate trajectory.

2. Sensitivity with respect to Depth Noise

Depth estimation is the main limitation of our EDS

method. This is because events are only used for camera

tracking (front-end) and the EGM highly depends on optical
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Figure 2. Sensitivity with respect to increasing noise in the depth of the 3D points, from 1% to 20% of the median scene depth. Atrium

scene. The ground truth trajectory is in purple, while the estimated trajectory is in blue.

flow, which is a function of depth. We previously presented

how depth noise affects the camera tracker and entails cam-

era pose inaccuracies. Figure 2 shows the Atrium sequences

with the perturbed map. We might conclude that up to 10%
standard deviation of the median depth in the scene, events

are still useful to track the camera motion. However, when

the mapper wrongfully estimates depth points, events do not

help the tracker, generating more inaccuracies than if those

events were not used. Therefore, it is important to correctly

select which points to incorporate in the EGM calculation.

3. Beamsplitter and Additional Experiments

Publicly available event-based Visual Odometry (VO)

datasets are limited and/or contain low quality sensory

data [1,2], either because of noisy events recorded with pio-

neer neuromorphic devices (such as the DAVIS240B [3] or

DAVIS346B) or due to low quality frames (i.e., no gamma

correction, small fill factor). Recent publicly available

datasets, such as [4, 5], are equipped with newer sensors,

however they do not share the same optical axis, having

frames and events in two image planes, standard and event-

based camera separately. There is a clear need for up-to-

date datasets in the event-based VO community with state-

of-the-art sensors. We now evaluate our monocular VO

method in an extended dataset with our custom co-capture

device. First, we present our custom-made beamsplitter de-

vice and the calibration procedure in brief (Sec. 3.1). Sec-

ond, we evaluate the performance of the method (Sec. 3.2).

3.1. Beamsplitter: Sensors and Calibration

We build a custom-made sensing device consisting of a

Prophesee Gen3 event camera [6] (640×480 px resolution)



Figure 3. Calibration. Frames from the standard FLIR camera

(top) and grayscale frames reconstructed from events (bottom),

both with checkerboard corners used during calibration.

Figure 4. Point cloud maps of the kitchen (top) and snoopy (bot-

tom) sequences.

and a color FLIR camera viewing the same scene through a

beamsplitter. The Snoopy house scene in Fig. 1 in the main

paper is recorded with such a device (see Fig. 6 and Tab. 3

for details).

Both cameras are calibrated and their outputs are aligned

with sub-pixel accuracy, giving the equivalent of a DAVIS

camera with higher quality color frames at VGA (640×480
px) resolution. To calibrate the cameras, we reconstruct

grayscale frames from events using e2calib [7] and input

them into Kalibr [8], which computes the intrinsic and ex-

trinsic camera parameters. Figure 3 depicts individual cam-

era outputs during the calibration process, and Fig. 5 shows

the rectified and undistorted image output with events.

Figure 5. Beamsplitter output with aligned events and frames for

the kitchen sequence. This figure contains animations that can be

viewed in Acrobat Reader.

3.2. Ego­motion Estimation Results

We recorded two sequences with our beamsplitter device

to prove generalization of our method to other (and newer)

visual sensory data. The sequences were recorded in nat-

ural indoor scenes and we used COLMAP [9] to provide

a ground truth trajectory, since no external motion-capture

system (i.e., Vicon or Optitrack) was not available. Figure 4

shows the reconstructed 3D map for EDS in the kitchen

and snoopy sequences using events and frames. The col-

ored points in the central part of the kitchen correspond to

the 3D locations which are active (i.e., generating events

using the event generation model - EGM) in the current

keyframe. snoopy points cloud used RGB color for a more

appealing visualization of the Snoopy reconstructed house.

Quantitatively (Tab. 2), our method outperforms all other

monocular pure VO baseline methods in the kitchen se-

quence and achieves state-of-the-art accuracy in the snoopy

sequence. We did not include comparison with US-

LAM [13] in Tab. 2 since it requires an IMU, which is

not available in these two sequences. The beamsplitter

device (see Sec. 3.2) has a better sensor quality than the

DAVIS240C in [1]. It produces events with less noise,

ORB-SLAM [10] EVO [11] DSO [12] EDS (Ours)

Input F E F E+F

kitchen 13.0±9.7 - 12.5±6.8 9.6±5.5

snoopy 35.1±28 - 30.7±14 30.9±13

Table 2. Comparison with state-of-the-art 6-DOF VO methods in

terms of Absolute Trajectory Error (RMS) [t: cm] and its standard

deviation on two beamsplitter sequences. Ground truth poses are

computed using COLMAP. Input data may be: events (E) and/or

grayscale frames (F). EVO entries marked with hyphen indicate

the code did not manage to recover poses on these sequences.



Figure 6. Beam-splitter with an event and a standard camera.

which makes the EGM more accurate (see multimedia ma-

terial for details).

4. The EDS Dataset

We realized the existing gap in good quality monocular

visual-inertial odometry (VIO) dataset with events. There-

fore we built a beamsplitter device during the last part of

our investigation. The aim of the beamsplitter was to record

and release a new dataset to promote and facilitate research

on the topic. The dataset targets VIO but it may be used

to demonstrate other tasks, such as optical flow estimation,

depth estimation, view synthesis (e.g., NeRFs), etc. Fig-

ure 7 shows snapshots of the recorded sequences with our

beamsplitter device. When available, we also record ground

truth poses from a motion-capture system.

In a nutshell, the EDS dataset provides synchronized

events with RGB frames, IMU and ground truth data. The

data is given in three different formats, pocolog1, rosbag2

and archive files with compressed events in HDF5 format.

The images are timestamped, with exposure time and gain

values, and the ground truth poses are at the camera frame

(i.e., Tmarker cam already applied), to facilitate its use. The

motion capture system is Vicon or the Optitrack depend-

ing on the scene. The long sequences such as 04 floor loop

and 12 floor eight loop provide ground truth at the start and

end locations. 15 apartment day gives start and finish posi-

tions using an Apriltag3 marker. In addition, the calibration

results to align frames and events as well as the camera to

IMU transformation are given (see the multimedia material

for further details).

5. Limitations

5.1. Grayscale Frames are not HDR

Our method works under the assumption of the availabil-

ity of collocated grayscale frames and events. Current de-

vices, such as the DAVIS camera [3], produce low-quality

1https://www.rock-robotics.org
2http://wiki.ros.org/rosbag
3https://april.eecs.umich.edu/software/apriltag

Sensor Type Description

Prophesee Gen 3.1

Prophesee PPS3MVCD event camera

640 × 480 pixels, 3/4 CMOS Monochrome

≥120 dB dynamic range

FLIR Blackfly S USB3

FLIR BFS-U3-16S2C-CS

640 480 pixels, 1/2.9 CMOS Color

71.4 dB dynamic range

uoto 75 Hz frame rate (depending on sequebce)

Inversense MPU-9250

Inertial Measurement Unit

MEMS, 16bits resolution

3x Gyroscopes

3x Accelerometers

3x Magnetometers (not utilized)

1000Hz sampling rate

Motion-capture system

Optitrack: RPG Flying room, 11 cameras

Vicon: RPG Drone Arena, 36 cameras

Camera pose: position + rotation

150 Hz sampling rate

Table 3. Details of the hardware utlized for the dataset collection

grayscale frames, with a dynamic range of ≈ 55 dB, which

is small compared to the high dynamic range (HDR) prop-

erties of event cameras (>120 dB). Hence, the frames from

the DAVIS are not HDR, and one could point this as a limi-

tation of the approach.

We tackled this problem in two ways: (i) by building

our own sensing device with higher quality frames than the

DAVIS (Fig. 6), and (ii) by testing alternatives, such as us-

ing grayscale frames reconstructed from the events (e.g.,

using state of the art [14]). The latter was tested on DSO

and our approach. The results from DSO are reported in

the main paper, indicated with DSO† in Tab. 3, and we ob-

serve that it did not produce as good results as DSO on reg-

ular frames (it even failed in bin and boxes sequences). We

observed the same failure effect when using reconstructed

grayscale frames on EDS. Nevertheless, we expect that if

using a higher-end device (e.g., (i)) is not an option, bet-

ter grayscale frames for VO with our method would be

obtained in the near future by means of improvements in

image reconstruction methods and/or event cameras (i.e.,

lower event noise). Event cameras are evolving fast, and

new prototypes, in combination with standard sensors may

occur in the near future, for example to advance computa-

tional photography (e.g., [15]).

5.2. Computational Performance

The current implementation of our method is un-

optimized and it is about 5× slower than real time. How-

ever, we think that there is large room for code improvement

and engineering to make it real-time capable. Specifically,

the back-end is un-optimized since automatic differentia-

tion in Ceres [16] is not real time when having a large num-

ber of parameters (i.e., 4000 points in a 7-keyframe sliding

window). It could be sped up by feeding fewer points to the

back-end and better selecting a sparse set of points. This is

the reason why we combined our front-end with DSO’s [12]



Figure 7. Sequences from our EDS Dataset: the dataset contains 16 sequences with events, color frames, IMU data and ground truth poses

on a diverse set of environments.

back-end, which is optimized and real-time capable with up

to 2000 points in a similar sliding-window size. The main

purpose of our work is to understand the limitations of pre-

vious event-based methods (e.g., why do many of the prior

works lose track or have large errors?) and overcome them

with a new design that has not been previously explored.

Finally, if the method is used offline, e.g., for recovering a

scene map and/or accurate camera trajectory, runtime is not

an issue.

5.3. Setting an Arbitrary Scale for the World

Absolute scale is not observable in monocular VO with-

out additional information or an IMU. Hence, in our method

we need to provide values to set the depth range of the ini-

tial map, which will guide the rest of the visual odometry

process. We did not consider using an IMU (accelerometer

and gyroscope) to focus on the visual aspects of odometry.

Sensor fusion with an IMU is left as future work.
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