
A. Supplemental
A.1. Reprojection Error

We calculate reprojection error as the L1 distance be-
tween source frame and reprojected target frame. This al-
lows to quantify the 3D consistency. While a texture rep-
resentation is 3D consistent by design, unoptimized tex-
els might still create visible noise artifacts when rendering
a trajectory. We calculate reprojection error on the Scan-
Net [2] dataset by using their captured camera trajectories.
For each source frame, we select a target frame that is (a)
two frames after the source frame (short-range consistency)
or (b) 20 frames after the source frame (long-range consis-
tency). Using the estimated poses and camera intrinsics, we
warp the pixels of the target frame to the source view. We
calculate L1 distance in the normalized image range [0, 1]
between reprojected target frame and source frame for all
pixels that are visible in both views. Please see Fig. 1 for a
visualization of the procedure.

Because the estimated poses are not perfectly accurate,
the reprojection error may never sink below a certain thresh-
old that captures this inaccuracy. Still, it allows to quantify
the 3D consistency by measuring the additional inconsisten-
cies caused by unoptimized textures, i.e., the error is higher
for unoptimized textures that are less consistent.

Source Frame Target Frame Reprojected Residual

Figure 1. Sample images used for calculating the reprojection er-
ror. We select a source frame and a target frame and warp the
target pixels from the target view to the source view. Reprojection
error is calculated as the L1 distance of all pixels between source
frame and reprojected target frame, that are visible in both views.

A.2. User Study Setup

We conduct a user study on the effectiveness of our pro-
posed depth- and angle-awareness. Users compared our
method against each baseline separately by preferring one
of two images. They judged in which image stylization
patterns (a) have less visible stretch and (b) are smaller in
the background. In total, 20 users each answered 70 ques-
tions, comparing against NMR [4], DIP [5] and ours with-
out angle- and depth-awareness (Only 2D). We show two
sample questions, one for each type, in Fig. 2. As can be
seen, users have the possibility to decide for one of two im-
ages or to answer that none of the two is better/worse. The
order of questions and of the “A” and “B” images is random
and different for each user. Users have the possibility to
zoom-in on the images for better judgement. Additionally,

we add rectangles on image regions that might be especially
interesting for evaluation of the questions. Note that users
still had to consider the whole image in their answer; the
rectangles merely act as additional input.

A.3. Variation of Depth Levels

The number of depth levels θl controls the depth varia-
tion that can be achieved within rendered poses of a scene.
Setting θl=4 is sufficient for our datasets, as larger scene
extent is rarely captured by many pixels. We could precom-
pute uv maps at larger resolutions to enable depth scaling at
even larger depth values. Small scenes may not require the
last layers, in which case they are simply not utilized dur-
ing optimization. Adding more layers in-between maps less
pixels to one layer, which can yield insufficient Gram ma-
trices and is computationally more expensive. Decreasing
θl reduces size variation at different depths (see Fig. 3).

A.4. Circle-Stretch and -Size Metric

We describe in more detail the metrics and principles
used in the main paper to quantify the effects of our depth
and angle awareness. In order to measure the effects, we
stylize a scene with a hand-crafted “circle” image (see main
paper) and only use the (multi-resolution, part-based) style
loss. After optimization, the red circles are stylized all over
the scene and are well-suited to describe the two drawbacks
of missing angle- and depth-awareness. For example, cir-
cles become ellipsoidal if a small grazing angle is used
for stylization and circles change their radius inconsistently
without depth awareness. We can now measure the degree
we alleviate these issues by measuring the size and stretch
of the circles/ellipses. Naturally, NST creates ellipses of
different shapes, but their overall distribution reveals the de-
gree of 3D awareness for the complete scene.

A.4.1 Segmentation of Ellipses

First, we automatically segment red ellipses from each im-
age of the stylized scene (see Fig. 4). We first apply an HSV
filter and only keep pixels in the ranges 0.6 ≤ S, V ≤ 1.0,
0.0 ≤ H ≤ 0.08 and 0.88 ≤ H ≤ 1.0. Then we
turn the filtered image into a binary mask by thresholding
colors above 0.15 intensity and denoise it with OpenCV’s
“fastNLMeansDenoising” function [1]. Afterwards, we use
OpenCV’s contour detection to get an edge map. We filter
out all contours with maxd > 2, where maxd is the max-
imum deviation from a convex hull, as measured by “con-
vexityDefects” [1]. We now fit ellipses to the remaining
contours with “fitEllipse”. We extract the pixel-radius as

rp =
hp + vp
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(a) Size Sample (b) Stretch Sample

Figure 2. Sample images used for the user study. Users judged in which image stylization patterns (a) are smaller in the background and
(b) have less visible stretch.

(a) θl=4 (b) θl=2

Figure 3. Variation of the number of depth levels θl. Decreasing
θl reduces size variation at different depths.

for every fitted ellipse and calculate its pixel-stretch as

sp = max(
hp

vp
,
vp
hp

) (2)

where hp is the pixel-length of the horizontal ellipse radius
and vp the vertical, respectively. We remove the remain-
ing wrongfully detected ellipses with rp < 10, rp > 1000
and sp > 10 to get a result like in Fig. 4. We use these
ellipse characteristics to calculate metrics for depth- and
angle-awareness.

A.4.2 Calculation of Depth Metrics

We calculate the correlation between per-pixel depth dxy
and ellipse radius rp to quantify the effect of our depth-
awareness in the 2D image plane (Corr. 2D). For each

detected ellipse we use the depth value of the pixel cor-
responding to the ellipse center. A high negative correla-
tion (e.g., −0.5) signals, that ellipse size decreases with
increasing depth, whereas a low correlation (e.g., −0.05)
signals, that ellipse size is independent of changes in depth.
A method that is able to stylize a scene depth-aware would
create ellipses with smaller size in the background and thus
have a high negative correlation in the 2D image plane.

To quantify the correlation in 3D, we backproject hp and
vp to world-space using the estimated pose and camera in-
trinsics and calculate the world-space radius as

rw =
hw + vw
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where hw and vw are the backprojected axis lengths. We
then calculate the correlation between rw and the per-pixel
depth dxy (Corr. 3D). A high negative correlation (e.g.,
−0.5) signals, that ellipse size in world-space still de-
creases with increasing depth, whereas a low correlation
(e.g., −0.05) signals, that ellipse size in world-space is in-
dependent of changes in depth. A method that is able to
stylize a scene depth-aware would create ellipses with uni-
formly distributed size in world-space (because the ellipse
size should only change when rendering a scene from dif-
ferent poses, due to perspective projection).

Note that the stylized ellipses naturally vary in their
sizes (e.g., ellipses can be smaller and larger independent
of depth). Therefore, the correlations will be precise up to
a certain threshold. However, the distribution of all seg-



mented ellipses across the whole scene still allows to quan-
tify the depth-awareness.

A.4.3 Calculation of Angle Metric

We backproject the pixel-stretch sp back to world-space as

sw = max(
hw

vw
,
vw
hw

) (4)

. Then we calculate the arithmetic mean over all sw values
for all detected ellipses. A higher mean value means that
overall we have more stretch, whereas a lower value signals
a more uniform stylization result. A method that is able to
stylize a scene angle-aware would create ellipses with small
stretch.

A.5. Additional Qualitative Results

We show additional qualitative results for our method.
Additional comparisons on the ScanNet [2] dataset can

be found in Fig. 5 and Fig. 6.
Additional comparisons for our ablation study can be

found in Fig. 7.

A.6. Style Image Assets

Throughout the main paper and the supplemental mate-
rial, we use style images created by artists. In Fig. 8 we list
all images and give credit to their respective creators.
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Input Filtered Red Denoised Binary Mask

Contour Detection Detected Ellipses Ellipses with Axis Points

Figure 4. Our pipeline for segmenting ellipses out of a stylized image for quantification of the depth and stretch effects. We filter the image
to only contain red colors (Filtered Red) and then transform that to a denoised binary image to remove remaining pixels (Denoised Binary
Mask). Afterwards we use contour detection to convert the binary mask into edge maps and finally fit ellipses to all applicable contours
(Detected Ellipses). Lastly, we find the horizontal and vertical axis of the ellipses as the distance from the center to corresponding points
on the edge of each ellipse.

RGB Mesh NMR [4] DIP [5] Ours

Figure 5. Top-down view on stylized meshes in comparison to previous work.



RGB and Style LSNV [3] NMR [4] DIP [5] Ours

Figure 6. Comparison of stylization results for our method and related work on the ScanNet [2] dataset. We texture the mesh with each
method (point cloud for Huang et al. [3] respectively) and render a single pose that is also captured in the RGB images.



(a) RGB and Style (b) Only 2D (c) With Angle (d) With Angle and Depth

Figure 7. Qualitative ablation study of our method. We compare ours (d) against only using angle (c) and not using angle and depth (b).
Using angle better distinguishes surfaces and using depth creates smaller/detailed stylization in the background.



June Tree,
Natasha Wescoat

The Starry Night,
Vincent van Gogh, 1889

Femme au chapeau,
Henri Matisse, 1905

Dinamismo di un’ automobile,
Luigi Russolo, 1913

The Muse,
Pablo Picasso, 1935

Il cavaliere rosso,
Carlo Carra, 1913

The Viaduct,
Henri Edmond Cross

Kanagawa oki nami ura,
Katsushika Hokusai, 1830-1832

Skrik,
Edvard Munch, 1893

Mosaic in Opus tessellatum Mosaic (unknown),
WikiArt.org

Self-Portrait,
Pablo Picasso, 1907

Feathers Leaves and Petals,
Kathryn Corlett

Small Magellanic Cloud,
NASA, ESA and A. Nota

Edgar Poe, Charles Baudelaire,
Um Orangotango e o Corvo,
Julio Pomar, 1985

Lapin et casserole rouge,
Bernard Buffet, 1948

L’homme à la tulipe,
Jean Metzinger, 1906

The Shipwreck of the Minotaur,
J.M.W. Turner, 1805

Sketch 2 for composition VII,
Wassily Kandinsky, 1913

Figure 8. List of all artistic paintings used throughout the main paper and supplemental material. We list the name of the painting and its
author if known.


