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A. Additional Network and Training Details
A.1. Loss details

Perceptual loss LP . To ensure that the generated images
are similar to their corresponding ground truths, we use
a multi-scale implementation introduced by FOMM [5].
Specifically, we first downsample the ground truth and the
output image to 4 different resolutions (i.e. 256 × 256,
128×128, 64×64 and 32×32). We denote R1,R2,R3,R4 as
the generated images, and G1,G2,G3,G4 as the correspond-
ing ground truths of the four different resolutions, respec-
tively. Then a pre-trained VGG network is used to extract
features from both these downsampled ground truths and
the output images. We compute the L1 distance between
the ground truth and output image in different resolutions:

LP =

4∑
i=1

L1(Gi, Ri) (1)

GAN loss LG. Given the ground truths and the generated
images in 256 × 256 resolution, we adopt an adversarial
learning objective function consisting of a least square loss
and a feature matching loss introduced in the pix2pixHD [6]
to train our DaGAN. Single-scale discriminators are used
for training 256× 256 images.
Equivariance loss LE . This loss is utilized to ensure
the consistency of the estimated keypoints, which is also
adopted by FOMM [5]. Given an image I and one of its
detected keypoint xk, we perform a known spatial transfor-
mation T on image I, resulting in a transformed image IT.
Therefore, the detected keypoints xT(k) on this transformed
image IT should be transformed in the same way. Thus, for
the K detected keypoints from image I, we have:

LE =

K∑
i=1

||xk −T−1(xT(k))||1 (2)
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Keypoints distance loss LD. To make the detected facial
keypoints much less crowded around a small neighbour-
hood, we employ a keypoints distance loss to penalize the
model if the distance between two corresponding keypoints
falls below a pre-defined threshold. For every two keypoints
xi and xj in an image, we thus have:

LD =

K∑
i=1

K∑
j=1

(1− sign(||xi − xj ||1 − α)), i ̸= j, (3)

where sign(·) is a sign function, and the α is the threshold
of distance. It is set to 0.2 in our work, which shows good
performance in our practice.

A.2. Network architecture details of DaGAN

The implementation details of the sub-networks in our
model are shown in Fig. 1 and described below.
Face depth network Fd. Our face depth network consists
of an encoder and a decoder. The encoder is a ResNet18
network [2] without the final fully connected and pooling
layers. The structure of the decoder is illustrated in Fig. 1a,
which predicts a depth map with a size of 1× 256× 256.
Keypoint estimator Fkp. In the training process, we con-
catenate the RGB image and its corresponding depth map to
form an RGB-D input with a size of 4×256×256, while the
ouputs are K keypoints {xτ,n}Kn=1,xτ,n ∈ R1×2. The de-
tailed structure of the keypoint estimator is shown in Fig. 1b.
Occlusion estimator T . We utilize the occlusion estima-
tor to predict an occlusion map to filter out the regions that
should be inpainted, and a motion flow mask for weight-
ing the motion field. As illustrated in Fig. 1c, there are two
heads at the end to predict these two parts.
Feature encoder EI . In Fig. 1f, to preserve low-level tex-
ture of the image, we only apply two DownBlocks to con-
struct the feature encoder EI in the feature warping module.
Depth encoder Ed. The architecture of our depth encoder
Ed in the cross-modal attention module is shown in Fig. 1g.
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Figure 1. Architecture details of each components in our model. The “DownBlock2d” (Fig. 1d) contains a convolutional layer with 3× 3
kernel, a batch normalization layer, a ReLU activation layer, and an average pooling layer that downsamples the input. The interpolation
layer in “UpBlock2d” (Fig. 1d) is utilized to upsample the image. The symbol “/2” in other sub-networks indicates an average pooling
layer to downsample the input.

The structure is the same as EI , and thus we can make the
features learned from both modalities with the same level of
representation power.
Discriminator D. The architecture of our discriminator
(Fig. 1h) is inspired by FOMM [5]. The input image is first
down-sampled four times, and then passed through a convo-
lutional layer with a kernel size of 1×1, and we finally out-
put a prediction map with a size of 512×26×26. Moreover,
we collect the intermediate feature maps and feed them into
the GAN loss LG.

B. Additional Experiment Details

B.1. Dataset Details

• VoxCeleb1 dataset contains videos of 1,251 different
identities with a resolution of 256 × 256. We extract
frames for each video and utilized the test split of Vox-
Celeb1 for evaluating self-reenactment. Following [1, 9],
we created the test set by sampling 2,083 image sets from
randomly selected 100 videos of the VoxCeleb1 test split.

• CelebV dataset contains videos of five different celebri-
ties with widely varying characteristics, which are utilize
to evaluate the performance of the models for reenact-
ing unseen targets, similar to the in-the-wild scenarios.
Moreover, we uniformly sampled 2000 image sets from
CelebV to perform the experiments.

B.2. Compare methods

• X2Face [8]. X2Face utilizes a simple framework to warp
the image directly. We obtain its results on VoxCeleb1
from a previous work [1].

• NeuralHead [10]. NeuralHead adopts an important com-
ponent from style transfer [3, 4], i.e. AdaIN layers [3].
Since a reference implementation is absent, we directly
report the replicated results from [1].

• MarioNETte [1]. MarioNETte utilizes three components
(i.e. image attention block, target feature alignment, and
landmark transformer) to address the identity preserva-
tion problem. We compare with it based on the results
reported in the original paper.



source driving baseline FOMM DaGANDaGAN (SA)

Figure 2. Additional qualitative comparison of different methods.
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Figure 3. Visualization of attention maps of different methods.

• FOMM [5]. FOMM propose a paradigm that aims to de-
tect the keypoints of the face image and model the motion
between two images using detected keypoints.

• MeshG [9]. MeshG aims to generate a dense face mesh
to model a dense motion map using graph convolutional
network. As there is no official code available, we only
report the its results from the original paper.

• OSFV [7]. OSFV provides a novel keypoint generation
method. We reimplemented this method according to its
published paper and train it on the VoxCeleb1 dataset to
compare with the proposed method.

B.3. More results

More explanation of depth-aware attention. Each
learned 3D spatial depth point is inherently used as a query
for calculating a global self-attention, which is thus depth-
aware. Here, we disable the depth in the cross-modal atten-
tion module, which then becomes a standard self-attention
module, termed as DaGAN (SA). The compared results are
shown in Fig. 2 and Table 1. It is clear that, the facial depth
is very important for the learning of dense 3D-geometry-
guided global self-attention, leading to clearly better gener-
ation performance. Additionally, a qualitative comparison
in Fig. 3 shows the difference of using and not using depth
for the attention learning. Our cross-modal attention can
effectively learn to attend to key foreground facial regions
(e.g. expression-related keypoint regions), comparing to the
one without depth (i.e. DaGAN (SA)) which also attends
to cluttered backgrounds, further confirming the advantage
of dense 3D geometry for overcoming noisy background in
generation.
More explanation of our baseline. To better illustrate our
baseline method, we select some other samples as shown in
Fig. 2, and we compare our baseline with FOMM as shown

Model CSIM ↑ PRMSE ↓ AUCON ↑ L1 ↓ AKD ↓ AED↓
Baseline 0.688 5.39 0.657 0.040 1.537 0.189
FOMM [5] 0.462 3.90 0.667 0.043 1.294 0.140

DaGAN (SA) 0.681 5.18 0.832 0.045 2.015 0.242
DaGAN 0.723 2.33 0.873 0.036 1.279 0.117

Table 1. Results for the baseline and cross-modal self-attention.

in Table 1. From the Table 1, the baseline is quantitatively
very competitive to FOMM (better than FOMM in CSIM,
worse in PRMSE, and comparable on AUCON). More qual-
itative examples shown in Fig. 2 can further indicate the
comparable performance between the baseline and FOMM.
More qualitative results. We show more samples in Fig. 4
and Fig. 5. The visualization shows that our DaGAN can
produce more natural-looking faces than the other compar-
ison methods. More than that, we also present our gener-
ated depth maps of the source images and the driving im-
ages. We can observe that our estimated depth maps can
effectively distinguish the face foreground area of an im-
age from the background. These robustly predicted depth
maps can also verify the effectiveness of our method for
self-supervised dense geometry recovery.
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Figure 4. Qualitative comparisons of different methods on cross-identity face reenactment. We also show the predicted face depth maps
and detected keypoints of source images and driving images.
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Figure 5. Qualitative comparisons of different methods on cross-identity face reenactment. We also show the predicted face depth maps
and detected keypoints of source images and driving images.


