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1. Ablation study on the GAN loss
In Eq. (5) of the paper, we employ a hybrid loss function

with three terms to optimize the coplanarity-aware GAN. To
provide an in-depth understanding of the proposed GAN,
we design a series of ablation experiments to analyze the
usefulness of each loss term. The results are reported in
Table 1.

In row 2, we do not use any part of the proposed GAN or
the plane masks in our method, and obtain an average error
of 0.49. In row 3, we add the generator back to the network,
and use the auxiliary loss Laux to contrast the generated
masks with a constant mask. The generated masks also par-
ticipate in the calculation of the alignment loss Lalign, such
that they can be implicitly optimized together with the pre-
dicted homographies. The auxiliary loss Laux helps prevent
the generated masks from being all-zero. The comparison
between row 2 and row 3 validates the effectiveness of mask
prediction in homography estimation, with the average er-
ror decreasing from 0.49 to 0.44. Even though the masks
are optimized without explicit guidance, they can still learn
to exclude some disturbance or uninformative regions.

In row 4, we add the whole coplanarity-aware GAN back
and begin to use the adversarial loss Ladv in training. Com-
paring with row 3, we can see that the average error de-
creases by only 0.01. But it does not mean the adversarial
loss is not helpful. The adversarial loss needs to be reg-
ularized by the gradient penalty Lgp to properly train the
generator and discriminator. When the gradient penalty is
also used (row 7), the average error can be further reduced
to 0.39. These experiments verify the effectiveness of Ladv

and Lgp as a whole. With the coplanarity constraint pro-
vided by Ladv , the masks are able to focus on the dominant
plane only. In row 5, we try to remove the auxiliary loss
Laus from our method. However, we find that the generator
can easily collapse to all-zero solutions in this case, and the
network training does not converge. It indicates that using
a constant mask for regularization is necessary.

As mentioned in Section 3.3 of the paper, we employ the
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gradient reversal layer [1] to facilitate one-stage adversarial
training. In row 6, we discard the gradient reversal layer,
and train the proposed GAN with a regular two-stage train-
ing strategy, which alternately fixes the generator or the dis-
criminator and updates the other one. Comparing with row
7, we can see that the one-stage strategy does not only help
to improve the performance of our method, but also make
the training more convenient.

2. Visualization of the weight token
In Section 3.2 of the paper, a weight token is employed

in the decoding stage to summarize useful information from
self-attention features to predict the weights of 8 flow bases.
To better understand the role of the weight token, we visu-
alize it by averaging on the channel dimension. For each
input patch of size 384 × 512, we use our trained model
to obtain an attention map of size 48 × 64, and then resize
it to the input size. The visualization results are illustrated
in Fig. 1. We can see that, after jointly optimizing with
the coplanarity-aware GAN, the weight token in the trans-
former is able to focus on regions in the dominant plane
by itself, thus making the transformer predict plane induced
homographies in testing.

3. Visualization of plane masks
In Fig. 4, we provide additional visualization results of

our masks in several challenging scenarios, including low
light, small foreground, large foreground, etc. Besides, we
also provide the masks of CA-Unsupervised [2] for compar-
ison. Comparing to our masks, CA masks tend to focus on
texture-rich regions rather than the dominant plane. With-
out explicit constraint, CA-Unsupervised implicitly learns
to focus on regions with rich textures, and suppress unreg-
isterable regions such as moving objects. However, with the
coplanarity constraint, our method explicitly optimizes the
mask generator to focus on the dominant plane, thus mak-
ing the mask even cleaner and further improving the ho-
mography estimation. For example, in Fig. 4(a), although
CA masks can pay attention to the buildings, they do not re-
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1) Ladv Lgp Laux Adversarial training RE LT LL SF LF Avg

2) - - - - 0.26(+18.18%) 0.59(+43.90%) 0.59(+3.51%) 0.63(+43.18%) 0.40(+29.03%) 0.49(+25.64%)
3) - - ✓ - 0.24(+9.09%) 0.50(+21.95%) 0.64(+12.28%) 0.59(+34.09%) 0.36(+16.13%) 0.44(+12.82%)
4) ✓ - ✓ one-stage 0.23(+4.55%) 0.55(+34.15%) 0.59(+3.51%) 0.46(+4.55%) 0.32(+3.23%) 0.43(+10.26%)
5) ✓ ✓ - one-stage - - - - - -
6) ✓ ✓ ✓ two-stage 0.23(+4.55%) 0.44(+7.32%) 0.60(+5.26%) 0.44(+0.00%) 0.31(+0.00%) 0.40(+2.56%)
7) ✓ ✓ ✓ one-stage 0.22(+0.00%) 0.41(+0.00%) 0.57(+0.00%) 0.44(+0.00%) 0.31(+0.00%) 0.39(+0.00%)

Table 1. Results of ablation experiments on the proposed GAN loss Lplane in Eq. (5) of the paper.

Figure 1. Visualization of the weight token.
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Figure 2. Alignment results of our method on unseen scenarios.
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Figure 3. Scenes with multiple candidate planes.

move the cars thoroughly, especially at the car boundaries,
which will downgrade the accuracy of the predicted homog-
raphy. In contrast, our masks could highlight the building

region only.

In addition to the coplanarity constraint, there is another
difference that makes us produce better masks than CA-
Unsupervised. In CA-Unsupervised, the masks are pre-
dicted from only one of the source and target images. How-
ever, our masks are always predicted from a pair of source
and target images, which enables our mask generator to in-
corporate the information from both images to identify un-
registerable regions.

Our method is also able to handle scenes multiple candi-
date planes. For example, in Fig. 3, we show three exam-
ples of the same scene with 4 planes, i.e., sky, lake, forest
and mountain. From Fig. 3 (a) to (c), the camera is gradu-



ally moving from left to right, and the corresponding mask
switches from the forest to the mountain. When the for-
est and mountain have similar areas in (b), our method will
compromise to highlight both planes.

4. Generalization
To further examine the generalization ability of the pro-

posed method, we test our model in several different sce-
narios that are unseen in the training set. In Fig. 2, we
display our results on several unseen scenarios, including
mountain, sea, street view, and buildings. Despite that these
images have different feature distributions from the training
images, our model still works well on aligning their domi-
nant planes. It indicates the potential of our method to be
deployed to practical applications.

References
[1] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In International conference
on machine learning, pages 1180–1189. PMLR, 2015. 1

[2] Jirong Zhang, Chuan Wang, Shuaicheng Liu, Lanpeng Jia, Ni-
anjin Ye, Jue Wang, Ji Zhou, and Jian Sun. Content-aware
unsupervised deep homography estimation. In Proc. ECCV,
pages 653–669, 2020. 1



(a)

Input

CA
mask

Our
mask

(b)

(c) (d)

(f)(e)

Input

CA
mask

Our
mask

Input

CA
mask

Our
mask

Figure 4. Visualization of CA masks and our masks.


