
Appendix

A1. Implementation details
Image classification on ImageNet. To train ResNet with
the CHEX method on ImageNet dataset, we use SGD opti-
mizer with a momentum of 0.875, a mini-batch size of 1024,
and an initial learning rate of 1.024. The learning rate is
linearly warmed up for the first 8 epochs, and decayed to
zero by a cosine learning rate schedule. The weight decay
is set to 3e-5. Same as previous methods [8, 9, 22], we also
use label smoothing with factor 0.1. We train the model
for a total of 250 epochs. For data augmentation, we only
use random resized crop to 224×224 resolution, random
horizontal flip, and normalization.

Object detection on COCO2017. Following [21], we train
SSD with the CHEX method on COCO train2017 split con-
taining about 118k images and evaluate on the val2017 split
containing 5k images. The input size is fixed to 300× 300.
We adopt SGD optimizer with a momentum of 0.9, a mini-
batch size of 64, and a weight decay of 5e-4. We train the
model for a total of 240k iterations. The initial learning rate
is set to 1e-3, and is decayed by 10 at the 160k and 200k
iteration. The SSD uses a ResNet-50 model pretrained on
ImageNet dataset as the backbone.

Instance segmentation on COCO2014. We follow the
standard practice as [10] to train Mask R-CNN with the
CHEX method on COCO training split, and evaluate on the
validation split. We train with a batch size of 32 for 160K
iterations. We adopt SGD with a momentum of 0.9 and a
weight decay of 1e-4. The initial learning rate is set to 0.04,
which is decreased by 10 at the 100k and 140k iteration. The
Mask R-CNN uses ResNet-50-FPN model as the backbone.

3D classification and segmentation on ModelNet40 and
ShapeNet. Following [27], we train the PointNet++ model
with the CHEX method using the Adam optimizer with a
mini-batch size of 32. The learning rate begins with 0.001
and decays with a rate of 0.7 every 20 epochs. We train the
model for a total of 200 epochs on the ModelNet40 for 3D
shape classification, and 250 epcohs on the ShapeNet dataset
for 3D part segmentation.

A2. More results
A2.1. CHEX on lightweight CNNs

We apply the CHEX method to compress compact CNN
models MobileNetV2 and EfficientNet-B0. As shown in
Table 1, our compressed MobileNetV2 model with around
30% FLOPs reduction achieves almost no accuracy loss com-
pared to the unpruned baseline. With 50% FLOPs reduction,
our compressed MobileNetV2 model outperforms previous
state-of-the-art channel pruning methods by 0.8∼2.3% ac-
curacy. Similarly, our method achieves superior accuracy

when compressing EfficientNet-B0 with the same FLOPs
reduction as the previous methods.

Model Method FLOPs Top-1

MobileNetV2

Baseline 300M 72.2%
LeGR [3] 220M 71.4%
GFS [33] 220M 71.6%
MetaPruning [22] 217M 71.2%
DMCP [8] 211M 71.6%
AMC [13] 210M 70.8%
PFS [31] 210M 70.9%
JointPruning [23] 206M 70.7%
CHEX-1 220M 72.0%

DMC [7] 162M 68.4%
GFS [33] 152M 69.7%
LeGR [3] 150M 69.4%
JointPruning [23] 145M 69.1%
MetaPruning [22] 140M 68.2%
CHEX-2 150M 70.5%

EfficientNet-B0

Baseline 390M 77.1%
PEEL [15] 346M 77.0%
CHEX-1 330M 77.4%

DSNet [17] 270M 75.4%
CHEX-2 270M 76.2%

CafeNet-R [29] 192M 74.5%
CHEX-3 192M 74.8%

Table 1. Results of MobileNetV2 and EfficientNet-B0 on ImageNet
dataset.

A2.2. Comparison with GrowEfficient and Prune-
Train

We follow GrowEfficient’s settings [35] in choosing
WideResNet-28-10 (on CIFAR10 dataset) and ResNet-50
(on ImageNet dataset) as the baseline models. For a fair
comparison, we adopt the same training hyper-parameters
as GrowEfficient, and train the models with CHEX from
scratch. Both GrowEfficient and PruneTrain [25] sparsify
the models using LASSO regularization during training. In
contrast, the CHEX method incorporates explicit channel
pruning and regrowing stages, and interleaves them in a re-
peated manner without any sparse regularization. As shown
in Table 2, our method achieves noticeably higher accu-
racy than GrowEfficient and PruneTrain under same FLOPs
reduction. Moreover, our method demonstrates effective
training cost saving compared to the baseline model training
without accuracy loss.

A2.3. Comparison with NAS

We also compare the CHEX method with the state-of-the-
art NAS method, OFA [2] on ImageNet. For a fair compari-
son, we take ResNet-50D [11] as the baseline architecture
to perform our CHEX method, by following OFA-ResNet-
50 [1]. OFA firstly trains a supernet, then applies progressive
shrinking in four dimensions, including number of layers,



Method FLOPs Top-1 Training
reduction cost saving

WRN-28-10 on CIFAR10 (200 epochs)
Baseline [35] 0% 96.2% 0%
GrowEfficient [35] 71.8% 95.3% 67.9%
CHEX 74.8% 96.2% 48.8%

ResNet-50 on ImageNet (100 epochs)
Baseline [35] 0% 76.2% 0%
PruneTrain [25] 44.0% 75.0% 30.0%
GrowEfficient [35] 49.5% 75.2% 47.4%
CHEX 50.2% 76.3% 43.0%

Table 2. Comparison with GrowEfficient and PruneTrain on CI-
FAR10 and ImageNet datasets. All methods train from scratch with
the same number of epochs.

number of channels, kernel sizes, and input resolutions, and
finally finetunes the obtained sub-models. In contrast, our
CHEX method only adjusts the number of channels via the
periodic pruning and regrowing process, and we do not re-
quire training a supernet nor extra finetuning. As shown in
Table 3, CHEX achieves superior accuracy under similar
FLOPs constraints but with significantly less model parame-
ters and training GPU hours than OFA.

Method FLOPs Params. Top-1 Training cost
(GPU hours)

OFA [1, 2] 900M 14.5M 76.0% 1200
OFA#25 [1, 2] 900M 14.5M 76.3% 1200
CHEX 980M 7.2M 76.4% 130
CHEX2× 980M 7.2M 76.8% 260

Table 3. Comparison with OFA using ResNet-50D model on Ima-
geNet dataset. “CHEX2×” means doubling the training epochs in
our method.

A2.4. CHEX from pretrained models

To further showcase the generality of our method, we ap-
ply CHEX to a pretrained model. For a fair comparison with
other pretrain-prune-finetune methods, we use the pretrained
ResNet models provided by the Torchvision model zoo 1.
In this setup, CHEX runs for 120 training epochs to match
the finetuing epochs of most of the previous methods. As
shown in Table 4, our method achieves competitive top-1 ac-
curacy when reducing the same amount of FLOPs compared
to previous state-of-the-art pretrain-prune-finetune methods.

A2.5. Comparison with gradual pruning

To further evidence the necessity of the channel explo-
ration via the repeated pruning-and-regrowing approach, we
compare CHEX with gradual pruning, where the channel ex-
ploration is changed to an iterative pruning-training process

1https://pytorch.org/vision/stable/models.html

Model Method FLOPs Top-1 Epochs

ResNet-18

Baseline 1.81G 69.4% 90
PFP [18] 1.27G 67.4% 90+180
SCOP [30] 1.10G 69.2% 90+140
SFP [12] 1.04G 67.1% 100+100
FPGM [14] 1.04G 68.4% 100+100
CHEX 1.04G 69.2% 90+120

ResNet-34

Baseline 3.7G 73.3% 90
SFP [12] 2.2G 71.8% 100+100
FPGM [14] 2.2G 72.5% 100+100
GFS [33] 2.1G 72.9% 90+150
DMC [7] 2.1G 72.6% 90+400
NPPM [6] 2.1G 73.0% 90+300
SCOP [30] 2.0G 72.6% 90+140
CHEX 2.0G 72.7% 90+120

ResNet-50

Baseline 4.1G 76.2% 90
SFP [12] 2.4G 74.6% 100+100
FPGM [14] 2.4G 75.6% 100+100
GBN [34] 2.4G 76.2% 90+260
LeGR [3] 2.4G 75.7% 90+60
GAL [20] 2.3G 72.0% 90+60
Hrank [19] 2.3G 75.0% 90+480
SRR-GR [32] 2.3G 75.8% 90+150
Taylor [26] 2.2G 74.5% 90+25
C-SGD [4] 2.2G 74.9% -
SCOP [30] 2.2G 76.0% 90+140
DSNet [17] 2.2G 76.1% 150+10
EagleEye [16] 2.0G 76.4% 120+120
CHEX 2.0G 76.8% 90+120

ResNet-101

Baseline 7.6G 77.4% 90
SFP [12] 4.4G 77.5% 100+100
FPGM [14] 4.4G 77.3% 100+100
PFP [18] 4.2G 76.4% 90+180
AOFP [5] 3.8G 76.4% -
NPPM [6] 3.5G 77.8% 90+300
DMC [7] 3.3G 77.4% 90+400
CHEX 3.0G 78.2% 90+120

Table 4. Compress ResNets starting from the pretrained models.
All models are trained on the ImageNet dataset. “Epochs” are
reported as: pretraining epochs plus all subsequent training epochs
needed to obtain the final pruned model.

with gradually increased channel sparsity (but without re-
growing). For a fair comparison, we apply the CSS pruning
criterion, determine the number of channels in each layer by
the batch-norm scaling factors, and use the single training
pass from scratch when perform gradual pruning. As shown
in Table 5, CHEX outperforms gradual pruning by 1.1%
accuracy under the same training setup.

Method FLOPs Top-1

Gradual pruning 1.0G 74.9%
CHEX 1.0G 76.0%

Table 5. Comparison with gradual pruning. Results are based on
pruning ResNet-50 by 75% FLOPs on ImageNet.

https://pytorch.org/vision/stable/models.html


A2.6. Prune models with shortcut connections

We have experimented two strategies to deal with the
shortcut connections: (1) Prune internal layers (e.g., the first
two convolution layers in the bottleneck blocks of ResNet-
50), leaving the layers with residual connections unpruned as
[24, 36]; (2) Use group pruning as [34], where the channels
connected by the shortcut connections are pruned simultane-
ously by summing up their CSS scores. As shown in Table 6,
the first strategy gave better accuracy at less FLOPs, thus we
adopted the first strategy in our CHEX method when pruning
models with shortcut connections.

Method FLOPs Top-1

Group pruning 1.4G 75.9%
Prune internal layers 1.0G 76.0%

Table 6. Comparison of two strategies for pruning models with
shortcut connections, using ResNet-50 on ImageNet as an example.

A2.7. Probabilistic sampling vs. deterministic se-
lection for channel regrowing

In channel regrowing stages, the channels to regrow are
sampled according to a probabilistic distribution derived
from the channel orthogonality. The importance sampling
encourages exploration in the regrowing stages, as the ran-
domness gives a chance to sample channels other than the
most orthogonal ones. Our ablation in Table 7 shows that
the probabilistic sampling achieves better accuracy. than
deterministic selection based on channel orthogonality.

Method FLOPs Top-1

Deterministic selection 1.0G 75.7%
Probabilistic sampling 1.0G 76.0%

Table 7. Comparison of two schemes for determining the channels
to regrow. Results are based on pruning ResNet-50 by 75% FLOPs
on ImageNet.

A2.8. Actual inference runtime acceleration

In the main paper, we chose FLOPs as our evaluation
criteria in order to compare with the prior arts, the majority of
which evaluate in terms of FLOPs and accuracy. Meanwhile,
we have compared the actual inference throughput (images
per second) of our compressed models against the unpruned
models in Table 8. CHEX method achieves 1.8× ∼ 2.5×
actual runtime throughput accelerations on PyTorch with
one NVIDIA V100 GPU in float32.

A2.9. Comparison of training cost

In Figure 1, we compare the total training FLOPs of
CHEX versus prior arts for pruning ResNet-50 on ImageNet.

Model ResNet-50 ResNet-101

FLOPs reduction 0% 50% 75% 0% 50% 75%

Throughput (img/s) 1328 2347 3259 840 1536 2032

Table 8. Comparison of the actual inference runtime throughput.

CHEX achieves higher accuracy at a fraction of the train-
ing cost. This is because CHEX obtains the sub-model in
one training pass from scratch, circumventing the expensive
pretrain-prune-finetune cycles.

0 1000 2000 3000 4000 5000

Total Training FLOPs (x10
15

)

CHEX

ThiNet

CURL

SCOP

EagleEye

Polarization

Figure 1. Comparison of the total training FLOPs for pruning
ResNet-50 on ImageNet.

A3. Convergence analysis
A3.1. Problem formulation

Training deep neural networks can be formulated into
minimizing the following problem:

min
W∈Rd

F (W) = Ex∼D[f(W;x)] (1)

where W ∈ Rd is the model parameter to be learned, and
f(W;x) is a non-convex loss function in terms of W. The
random variable x denotes the data samples that follow the
distribution D. Ex∼D[·] denotes the expectation over the
random variable x.

A3.2. Notation

We clarify several notions to facilitate the convergence
analysis.

• Wt denotes the complete model parameter at the t-th
iteration.

• mt ∈ Rd is a mask vector at the t-th iteration.

• xt is the data sampled at the t-th iteration.

A3.3. Algorithm formulation

With notations introduced in the above subsection, the
proposed CHEX method can be generalized in a way that is
more friendly for convergence analysis, see Algorithm 1.



Algorithm 1: CHEX (A math-friendly version)
1 Input: Initialize W0 and m0 randomly ;
2 for iteration t = 0, 1, · · · , T do
3 Sample data xt from distribution D ;
4 Generate a mask mt following some rules ;
5 Update Wt+1 = Wt − η∇f(Wt �mt;xt)�mt

6 Output: The pruned model parameter WT �mT ;

Remark 1. Note that Algorithm 1 is quite general. It does
not specify the rule to generate the mask mt. This implies
the convergence analysis established in Sec. 6 does not rely
on what specific mt is utilized. In fact, it is even allowed for
mt to remain unchanged during some period.

A3.4. Assumptions

We now introduce several assumptions on the loss func-
tion and the gradient noise that are standard in the literature.

Assumption 1 (SMOOTHNESS). We assume F (W) is L-
smooth, i.e., it holds for any W1,W2 ∈ Rd that

‖∇F (W1)−∇F (W2)‖ ≤ L‖W1 −W2‖ (2)

or equivalently,

F (W1)− F (W2)

≤ 〈∇F (W2),W1 −W2〉+
L

2
‖W1 −W2‖2 (3)

Assumption 2 (GRADIENT NOISE). We assume

E{∇f(W;xt)} = ∇F (W), (4)

E‖∇f(W;xt)−∇F (W)‖2 ≤ σ2, (5)

where σ > 0 is a constent. Moreover, we assume the data
sample xt is independent of each other for any t.

This assumption implies that the stochastic filter-gradient
is unbiased and has bounded variance.

Assumption 3 (MASK-INCURRED ERROR). It holds for
any W and mt that

‖W −W �mt‖2 ≤ δ2‖W‖2 (6)

‖∇F (W)−∇F (W)�mt‖2 ≤ ζ2‖∇F (W)‖2 (7)

where constants δ ∈ [0, 1] and ζ ∈ [0, 1].

With (7), we have

ζ‖∇F (W)‖
≥ ‖∇F (W)−∇F (W)�mt‖
≥ ‖∇F (W)‖ − ‖∇F (W)�mt‖ (8)

which implies

‖∇F (W)�mt‖2 ≥ (1− ζ)2‖∇F (W)‖2 (9)

for any W and mt.

A3.5. Convergence analysis

Now we are ready to establish the convergence property.

Theorem 1 (CONVERGENCE PROPERTY). Under Assump-
tions 1 – 3, if learning rate η =

√
2C0

σ
√
L(T+1)

in which

C0 = E[F (W0)], it holds that

1

T + 1

T∑
t=0

E‖∇F (Wt �mt)‖2

≤ 4σ
√
LC0

(1−ζ)2
√
T + 1

+
2L2δ2

(T + 1)(1− ζ)2
T∑
t=0

E‖Wt‖2 (10)

Proof. With inequality (3) and Line 6 in Algorithm 1, it
holds that

F (Wt+1)− F (Wt)

≤ − η〈∇F (Wt), [∇f(Wt �mt;xt)]�mt〉

+
η2L

2
‖[∇f(Wt �mt;xt)]�mt‖2 (11)

With Assumption 2, it holds that

E〈∇F (Wt),∇f(Wt �mt;xt)�mt〉
(4)
= E〈∇F (Wt),∇F (Wt �mt)�mt〉
= E〈∇F (Wt)�mt,∇F (Wt �mt)�mt〉

=
1

2
E‖∇F (Wt)�mt‖2 +

1

2
E‖∇F (Wt �mt)�mt‖2

− 1

2
E‖∇F (Wt)�mt −∇F (Wt �mt)�mt‖2

≥1

2
E‖∇F (Wt)�mt‖2 +

1

2
E‖∇F (Wt �mt)�mt‖2

− 1

2
E‖∇F (Wt)−∇F (Wt �mt)‖2

(2)
≥1

2
E‖∇F (Wt)�mt‖2 +

1

2
E‖∇F (Wt �mt)�mt‖2

− L2

2
E‖Wt −Wt �mt‖2

(6)
≥1

2
E‖∇F (Wt)�mt‖2 +

1

2
E‖∇F (Wt �mt)�mt‖2

− L2δ2

2
E‖Wt‖2

(9)
≥ (1− ζ)2

2
E‖∇F (Wt)‖2 +

(1− ζ)2

2
E‖∇F (Wt �mt)‖2

− L2δ2

2
E‖Wt‖2 (12)

Furthermore, with Assumption 2, it holds that

E‖[∇f(Wt �mt;xt)]�mt‖2

≤ E‖∇f(Wt �mt;xt)‖2



(5)
≤ E‖∇F (Wt �mt)‖2 + σ2 (13)

Substituting (12) and (13) into (11), we achieve

E[F (Wt+1)− F (Wt)]

≤ − η(1− ζ)2

2
E‖∇F (Wt)‖2

− η(1− ζ)2

2
E‖∇F (Wt �mt)‖2

+
ηL2δ2

2
E‖Wt‖2

+
η2L

2
E‖∇F (Wt �mt)‖2 +

η2Lσ2

2

≤ − η(1− ζ)2

4
E‖∇F (Wt)‖2

− η(1− ζ)2

4
E‖∇F (Wt �mt)‖2

+
ηL2δ2

2
E‖Wt‖2 +

η2Lσ2

2
(14)

where the last inequality holds by setting η ≤ (1−ζ)2
2L . The

above inequality will lead to

1

T + 1

T∑
t=0

E‖∇F (Wt)‖2 + E‖∇F (Wt �mt)‖2

≤ 4

η(1− ζ)2(T + 1)
E[F (W0)]

+
2L2δ2

(1− ζ)2(T + 1)

T∑
t=0

E‖Wt‖2 +
2ηLσ2

(1− ζ)2

≤ 4σ
√
LC0

(1−ζ)2
√
T + 1

+
2L2δ2

(T + 1)(1− ζ)2
T∑
t=0

E‖Wt‖2 (15)

where C0 = E[F (W0)] and the last equality holds when
η =

√
2C0

σ
√
L(T+1)

. The above inequality will lead to (10).

A.4. Societal impact

Our method can effectively reduce the computation cost
of diverse modern CNN models while maintaining satisfac-
tory accuracy. This can facilitate the deployment of CNN
models to real-world applications, such as pedestrian detec-
tion in autonomous driving and MRI image segmentation in
clinic diagnosis. Moreover, our method does not increase
the training cost compared to standard CNN model training.
We provide a more affordable and efficient solution to CNN
model compression, which is of high value for the commu-
nity and society to achieve Green AI [28]. On the other hand,
our method cannot prevent the possible malicious usage,
which may cause negative societal impact.

A.5. Limitation
CHEX tends to work better for more over-parameterized

CNN models. When the model has substantial redundancy,
our method can obtain efficient sub-models that recover the
original accuracy well. When compressing already under-
parameterized CNN models, our method will still have no-
ticeable accuracy loss, though such loss may still be less than
the comparable methods (See Table 1 in Appendix A2.1).

CHEX is primarily evaluated on diverse computer vision
(CV) tasks in this paper. More evaluations are required to
verify the broader applicability of CHEX to other domains,
such as natural language processing, and we leave it as one
of our future works.

Finally, CHEX reflects the layer importance based on
the scaling factors in the batch-norm layers. Although this
technique can provide meaningful guidance in allocating the
number of channels in the sub-models, deeper understanding
on why this mechanism works is still an open question.

References
[1] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. OFA-ResNet-50. https://github.com/
mit-han-lab/once-for-all, 2020. 1, 2

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize
it for efficient deployment. Proceedings of International
Conference on Learning Representations, 2020. 1, 2

[3] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Mar-
culescu. Towards efficient model compression via learned
global ranking. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2020. 1, 2

[4] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong
Han. Centripetal sgd for pruning very deep convolutional
networks with complicated structure. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4943–4953, 2019. 2

[5] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han,
and Chenggang Yan. Approximated oracle filter pruning for
destructive cnn width optimization. Proceedings of Interna-
tional Conference on Machine Learning, 2019. 2

[6] Shangqian Gao, Feihu Huang, Weidong Cai, and Heng Huang.
Network pruning via performance maximization. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9270–9280, 2021. 2

[7] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.
Discrete model compression with resource constraint for deep
neural networks. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1899–
1908, 2020. 1, 2

[8] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.
Dmcp: Differentiable markov channel pruning for neural
networks. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1539–1547, 2020.
1

[9] Yi Guo, Huan Yuan, Jianchao Tan, Zhangyang Wang, Sen
Yang, and Ji Liu. Gdp: Stabilized neural network pruning

https://github.com/mit-han-lab/once-for-all
https://github.com/mit-han-lab/once-for-all


via gates with differentiable polarization. Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 5239–5250, 2021. 1

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1

[11] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classifica-
tion with convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 558–567, 2019. 1

[12] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and
Yi Yang. Soft filter pruning for accelerating deep convolu-
tional neural networks. Proceedings of International Joint
Conference on Artificial Intelligence, 2018. 2

[13] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. Proceedings of the European
Conference on Computer Vision, pages 784–800, 2018. 1

[14] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4340–4349, 2019. 2

[15] Yuenan Hou, Zheng Ma, Chunxiao Liu, Zhe Wang, and
Chen Change Loy. Network pruning via resource reallocation.
arXiv preprint arXiv:2103.01847, 2021. 1

[16] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Ea-
gleeye: Fast sub-net evaluation for efficient neural network
pruning. Proceedings of European Conference on Computer
Vision, pages 639–654, 2020. 2

[17] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic slimmable network.
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021. 1, 2

[18] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman,
and Daniela Rus. Provable filter pruning for efficient neu-
ral networks. Proceedings of International Conference on
Learning Representations, 2020. 2

[19] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2020. 2

[20] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-
mann. Towards optimal structured cnn pruning via generative
adversarial learning. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2790–2799,
2019. 2

[21] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
Ssd: Single shot multibox detector. Proceedings of European
conference on computer vision, pages 21–37, 2016. 1

[22] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3296–3305, 2019. 1

[23] Zechun Liu, Xiangyu Zhang, Zhiqiang Shen, Zhe Li, Yichen
Wei, Kwang-Ting Cheng, and Jian Sun. Joint multi-dimension
pruning. arXiv preprint arXiv:2005.08931, 2020. 1

[24] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
Proceedings of the IEEE international conference on com-
puter vision, pages 5058–5066, 2017. 3

[25] Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen,
Sujay Sanghavi, and Mattan Erez. Prunetrain: fast neural
network training by dynamic sparse model reconfiguration.
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages
1–13, 2019. 1, 2

[26] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 11264–11272, 2019. 2

[27] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 1

[28] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni.
Green ai. Communications of the ACM, 63(12):54–63, 2020.
5

[29] Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Chang-
shui Zhang, and Chang Xu. Locally free weight sharing for
network width search. Proceedings of International Confer-
ence on Learning Representations, 2021. 1

[30] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing
Xu, Chao Xu, and Chang Xu. Scop: Scientific control for
reliable neural network pruning. Proceedings of Advances in
Neural Information Processing Systems, 2020. 2

[31] Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su,
Bo Zhang, and Xiaolin Hu. Pruning from scratch. Proceed-
ings of AAAI, 2020. 1

[32] Zi Wang, Chengcheng Li, and Xiangyang Wang. Convolu-
tional neural network pruning with structural redundancy re-
duction. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14913–14922,
2021. 2

[33] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam
Klivans, and Qiang Liu. Good subnetworks provably exist:
Pruning via greedy forward selection. Proceedings of Interna-
tional Conference on Machine Learning, pages 10820–10830,
2020. 1, 2

[34] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping
Wang. Gate decorator: Global filter pruning method for
accelerating deep convolutional neural networks. Proceedings
of Advances in Neural Information Processing Systems, 2019.
2, 3

[35] Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael
Maire. Growing efficient deep networks by structured contin-
uous sparsification. Proceedings of International Conference
on Learning Representations, 2021. 1, 2

[36] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. Proceedings of Advances in Neural Information Pro-
cessing Systems, pages 883–894, 2018. 3


