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A. Overview

The supplementary material provides further details on
DAFormer as well as additional experimental results and
analysis. In particular, Sec. B provides further implementa-
tion details, Sec. C discusses the class statistics of sampling
with and without RCS, Sec. D provides an ablation of the
training strategies with DeepLabV2, Sec. E studies the pa-
rameter sensitivity of RCS and FD, Sec. F ablates the UDA
self-training, Sec. G compares the runtime and memory
consumption, Sec. H analyzes example predictions, Sec. [
compares DAFormer with additional previous UDA meth-
ods, and Sec. J discusses limitations of DAFormer.

B. Source Code and Further Details

The source code to reproduce DAFormer and all ab-
lation studies is provided at https://github.com/
lhoyer /DAFormer. Please, refer to the contained
README . md for further information such as the environ-
ment and dataset setup.

For the distinction of thing- and stuff-classes, we follow
the definition by Caesar et al. [3]. Applied to Cityscapes,
thing-classes are traffic light, traffic sign, person, rider, car,
truck, bus, train, motorcycle, and bicycle and stuff-classes
are road, sidewalk, building, wall, fence, pole, vegetation,
terrain, and sky.

C. Rare Class Sampling Statistics

Most (real-world) datasets have an imbalanced class dis-
tribution. This is also the case for the used source datasets
as can be seen in Fig. S1 in the blue bars. Please note that
the y-axis is scaled logarithmically so that the rare classes
are still visible. This problem is addressed by RCS by sam-
pling images with rare classes more often as discussed in
Sec. 3.3 of the main paper. Therefore, more pixels of the
re-sampled images belong to the rare classes as can be seen
in the orange bars of Fig. S1, which directly results in a sig-
nificantly improved IoU for these rare classes as can be seen
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Figure S1. Class statistics of the corresponding dataset for 10k
samples. Note that the y-axis is scaled logarithmically. RCS sam-
ples images with rare classes more often than random sampling.

in Fig. 6 of the main paper. The RCS temperature 7' = 0.01
is chosen to (approximately) maximize the number of re-
sampled pixels of the class with the least re-sampled pixels
as described in Sec. 3.3 of the main paper. This strategy
results in a balance of the number of re-sampled pixels of
the classes with the least re-sampled pixels as can be seen
in the orange bars of Fig. S1a for the classes traffic light and
bicycle.

Further, Fig. S2 shows the RCS class sampling proba-
bilities P(c) from Eq. 7 in the main paper for the default
RCS temperature 7' = 0.01. It can be seen that the class
sampling probability for rare classes is higher than for com-
mon classes as expected. For some common classes such as
road and sky, P(c) is very close to zero. As these common
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Figure S2. RCS class sampling probability P(c) from Eq. 7 in the
main paper with an RCS temperature of 7' = 0.01.

Table S1. Ablation of the components of the UDA framework
for SegFormer and DeepLabV2. Mean and standard deviation are
calculated over 3 random seeds.

Network ~ Warmup RCS FD mloU

SegF. [23] - - - 51.8+08
SegF. [23] v - - 58.2 +£0.9
SegF. [23] v - v 6L7+26
SegF. [23] v v - 640424
SegF. [23] v v v 66.2 +1.0
DLv2 [4] - - - 49.1+20
DLv2 [4] v - 542 +17
DLv2 [4] v - v 555413
DLV2 [4] v v - 557405
DLv2 [4] v v v 56.6+1.2

classes are part of almost every image, it is not necessary to
specifically sample images containing these particular com-
mon classes.

D. Training Strategies for DeepLabV2

Tab. S1 shows the performance of the improved UDA
training strategies for the DeepLabV2 architecture in ad-
dition to the SegFormer architecture from the main paper.
It demonstrates that learning rate warmup, RCS, FD, and
their combination are all beneficial for DeepLabV2 as well.
However, the performance improvement for SegFormer is
significantly larger than for DeepLabV2, supporting our hy-
pothesis that the network architecture is crucial for UDA
performance.

Table S2. Hyperparameter sensitivity study for RCS and FD. The
default parameters are marked with *. The evaluation setup is
equivalent to row 8 in Tab. 5 of the main paper.

RCST  mloU AFD mloU
0.001 65.6 0.001 65.8
0.002 66.8 0.002 66.2
0.01* 66.8 0.005%* 66.8
0.05 66.8 0.01 66.5
0.1 65.5 0.02 65.8

Table S3. Ablation of UDA self-training (ST, see Sec. 3.1 in the
main paper) with and without RCS and FD. Warmup is enabled
in all configuration. The experiments are conducted with Seg-
Former [23] and complement Tab. 5 in the main paper.

w/o (RCS+FD)  w/ (RCS+FD)
w/o ST 45.620.6 50.740.3
w/ ST 58.240.9 66.2+1.0

E. Parameter Sensitivity of RCS and FD

To analyze the sensitivity of the parameters of FD and
RCS, Tab. S2 shows a study of 7" for RCS and Arp for FD.
It can be seen that RCS is stable up to a deviation of factor
5 from the default value. For FD, the weighting is stable
up to a factor of about 2. Given that both default values
are chosen according to an intuitive strategy (maximization
of re-sampled pixels for the class with the least re-sampled
pixels for 7" and gradient magnitude balance for Arp), the
robust range of the hyperparameters is sufficient to select a
good value according to the described strategy.

F. Ablation of Self-Training

As FD and RCS operate on source data, they can also
be used to improve the domain generalization ability of
a model trained only on the source domain without self-
training (ST) on the target domain. Without ST (row 1 in
Tab. S3), RCS and FD increase the network performance
by +5.1 mloU, demonstrating their benefit for domain gen-
eralization. Combined with ST (row 2 in Tab. S3), their im-
provement even increases to +8.0 mloU showing that RCS
and FD reinforce ST, confirming their particular importance
for UDA as well.

G. Runtime and Memory Consumption

DAFormer can be trained on a single RTX 2080 Ti GPU
within 16 hours (0.7 it/s) while requiring about 9.6 GB
GPU memory during training. It has a throughput of 8.7
img/s for inference. In Tab. S4, DAFormer is compared
with other network architectures and UDA methods with
respect to runtime and memory consumption. Even though
DAFormer is heavier than DeepLabV2 and SegFormer, it



Table S4. Runtime and memory consumption of different network
architectures and UDA methods on a single RTX 2080 Ti GPU.

Training  Inference Training

UDA Method Network  Throughput Throughput ~ GPU U™
. R Params
(it/s) (img/s) Memory

ST DLv2 [4] 1.24 113 56GB 432M

ST SegF. [23] 0.95 89 7.7GB 84.6M

ST+RCS+FD DLv2 [4] 0.91 113 8.6GB 432M

ST+RCS+FD SegF. [23] 0.75 89 88GB 84.6M

ST+RCS+FD DAFormer 0.71 87 9.6GB 852M

(b) Bicycle annotation policy on GTA

Figure S3. Different annotation policies for bicycle on Cityscapes
and GTA. It can be seen that the entire wheel is segmented as bi-
cycle for Cityscapes, while only the tire and spokes of the wheel
are segmented as bicycle for GTA.

requires only 12% more GPU memory and about 30% more
training/inference time than DeepLabV2 when the same
UDA configuration is used. When ablating the proposed
RCS and FD, the GPU memory consumption is further re-
duced by 54% and the training time is decreased by 36%
mainly due to the additional ImageNet encoder and the fea-
ture distance calculation. However, as this is only relevant
for training, the inference throughput is the same.

H. Qualitative Analysis

Comparison with ProDA The better performance of
DAFormer compared to ProDA [27] is also reflected in ex-
ample predictions shown in column 4 and 5 of Fig. S4-S9.
The major improvements come from a better recognition of
the classes train (Fig. S4), bus (Fig. S5), truck (Fig. S6),
car (Fig. S7), and sidewalk (Fig. S8) across different per-
spectives, object sizes, and appearances. Fig. SO also shows
a better recognition of rider, bicycle, and fence. Further-
more, in the shown examples, it can generally be seen that
DAFormer better segments fine structures, which is espe-
cially beneficial for small classes such as pole, traffic sign,
and traffic light.

Domain Generalization Additionally, column 2 and 3 of
Fig. S4-S9 compare the source-only training of DeepLabV2
and SegFormer. It can be seen that SegFormer better gen-
eralizes from the source training to the target domain than
DeepLabV2. Still, there is a considerable gap between Seg-
Former with source-only training and DAFormer, showing
that the adaptation to the target domain is essential.

Error Cases To give additional insights into the limita-
tions of DAFormer, Fig. S10-S14 show some of the typi-
cal error cases. This includes confusion of sidewalk and
road if the texture is similar or there are cycle path mark-
ings (Fig. S10), confusion of wall and fence (Fig. S11), mis-
classification of some special vans (Fig. S12), misclassifica-
tion of partly-occluded busses (Fig. S13), misclassification
of persons close to bikes (Fig. S14 top), misclassification
of standing riders (Fig. S14 bottom), and segmentation of
only the bicycle tires (Fig. S14 bottom). That only the tires
and not the inside of the wheel of a bicycle are segmented is
caused by the annotation policy of GTA (see Fig. S3). Note
that for many of the error cases, also previous methods such
as ProDA experience similar issues.

I. Comparison with Previous Methods

In the main paper, we compare DAFormer with a se-
lection of representative UDA methods. However, vari-
ous other UDA methods were proposed in the last few
years. A comprehensive comparison with these is shown
in Tab. S5 for GTA—Cityscapes and in Tab. S6 for
Synthia—Cityscapes. On the one side, some of the newly
shown methods can achieve a higher IoU for specific classes
than the previous methods shown in the main paper, but on
the other side, their performance suffers for other classes.
Therefore, ProDA [27] still achieves the best mloU of the
previous state-of-the-art methods. Overall, DAFormer is
able to outperform all previous works both in mloU and
classwise IoU for GTA—Cityscapes, often by a consider-
able margin. On Synthia—Cityscapes, this statement holds
except for the stuff-classes road, sidewalk, vegetation, and
sky. This might be due to the shape-bias of Transform-
ers [2], which causes the network to focus more on shape
than texture. The shape bias could improve the generaliza-
tion ability for thing-classes as their shape is more domain-
robust than their texture. However, for stuff-classes, the tex-
ture is sometimes crucial to distinguish similar classes such
as road and sidewalk and a shape-bias could be hindering.

The results in Tab. S5 and Tab. S6 are reported with the
training configurations used in the original methods, which
do not use learning rate warmup. For a fair comparison, we
have re-implemented DACS [!5] with our training configu-
ration including learning rate warmup, which achieves 54.2
mloU on GTA—Cityscapes. Still, DAFormer outperforms
it by +14.1 mloU.
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Figure S4. Example predictions showing a better recognition of train as opposed to bus by DAFormer on GTA—Cityscapes.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S5. Example predictions showing a better recognition of bus by DAFormer on GTA—Cityscapes.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S6. Example predictions showing a better recognition of truck by DAFormer on GTA— Cityscapes.



Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth
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Figure S7. Example predictions showing a better recognition of car as opposed to truck by DAFormer on GTA—Cityscapes.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S8. Example predictions showing a better recognition of sidewalk as opposed to road by DAFormer on GTA—Cityscapes.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S9. Further example predictions on GTA—Cityscapes showing a better recognition of bicycle, rider, and fence.



Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth
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Figure S10. Typical error cases on GTA—Cityscapes: Confusion of sidewalk and road if the texture is similar.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S11. Typical error cases on GTA—Cityscapes: Confusion of wall and fence.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S12. Typical error cases on GTA—Cityscapes: Misclassification of special vans.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S13. Typical error cases on GTA—Cityscapes: Misclassification of partly-occluded busses.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S14. Typical error cases on GTA—Cityscapes: Misclassification of persons close to bikes (top row), standing riders (bottom row),
and missing segmentation of the inside of the bicycle wheel (bottom row).



Table S5. Comparison with previous methods on GTA—Cityscapes. Our results (DAFormer) are averaged over 3 random seeds.

‘ Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike ‘ mloU
AdaptSeg [16] 86.5 259 798 221 200 23.6 331 21.8 81.8 259 759 573 262 763 29.8 32.1 72 295 325|414
CyCADA [6] 86.7 356 80.1 198 17.5 38.0 399 415 827 279 73.6 649 190 650 120 28.6 45 31.1 42.0]| 427
CLAN [11] 87.0 271 79.6 273 233 283 355 242 836 274 742 586 28.0 762 33.1 367 67 319 314|432
ADVENT [18] 894 331 81.0 266 268 272 335 247 839 367 788 587 305 848 385 445 1.7 31.6 324|455
APODA [24] 85.6 328 79.0 295 255 268 346 199 837 406 779 592 283 846 346 492 80 326 39.6| 459
CBST [31] 91.8 535 80,5 327 21.0 340 289 204 839 342 809 531 240 827 303 359 160 259 428|459
PatchAlign [17] |92.3 519 821 292 251 245 338 330 824 328 822 586 272 843 334 463 22 295 323|465
MRKLD [32] 91.0 554 80.0 337 214 373 329 245 850 341 808 577 246 841 278 30.1 269 260 423]|47.1
BDL [9] 91.0 447 842 346 27.6 302 360 360 850 43.6 830 586 31.6 833 353 49.7 33 288 356|485
FADA [20] 91.0 506 86.0 434 298 368 434 250 86.8 383 874 640 380 852 316 46.1 65 254 37.1| 50.1
CAG [28] 90.4 51.6 83.8 342 278 384 253 484 854 382 781 586 346 847 219 427 41.1 293 372|502
Seg-Uncert. [29] [ 904 312 851 369 256 375 488 485 853 348 8l.1 644 368 863 349 522 1.7 290 44.6| 503
FDA [25] 925 533 824 265 276 364 406 389 823 398 780 626 344 849 341 53.1 169 277 464|505
PIT [12] 875 434 788 312 302 363 399 420 792 371 793 654 375 832 460 456 257 235 499] 50.6
TIAST [14] 938 578 851 395 267 262 43.1 347 849 329 880 626 29.0 873 392 49.6 232 347 39.6| 515
DACS [15] 899 39.7 879 30.7 395 385 464 528 880 440 888 672 358 845 457 502 00 273 34.0]| 52.1
SAC[1] 90.4 539 86.6 424 273 451 485 427 874 401 86.1 675 297 885 49.1 546 9.8 266 453|538
CTF [13] 925 583 865 274 288 381 467 425 854 384 918 664 37.0 87.8 40.7 524 44.6 417 59.0| 56.1
CorDA [21] 947 63.1 876 30.7 40.6 402 478 51.6 876 47.0 89.7 66.7 359 90.2 489 575 00 398 56.0| 56.6
ProDA [27] 87.8 56.0 79.7 463 448 456 53.5 535 88.6 452 821 707 392 888 455 594 10 489 564|575
DAFormer (Ours) | 95.7 70.2 894 53.5 481 49.6 558 594 899 479 925 722 44.7 923 745 782 651 559 61.8| 68.3

Table S6. Comparison with previous methods on Synthia—Cityscapes. Our results (DAFormer) are averaged over 3 random seeds.

‘Road S.walk Build. Wall Fence Pole TrLight Sign Veget. Sky Person Rider Car Bus M.bike Bike‘mloU16 mloU13
SPIGAN [£] 71.1 298 714 37 03 332 64 156 812 789 527 13.1 759 255 10.0 20.5| 36.8 424
GIO-Ada [5] 783 292 769 114 03 265 108 172 81.7 819 458 154 680 159 75 304| 373 43.0
AdaptSeg [16] 792 372 788 - - - 99 105 782 805 535 196 67.0 295 21.6 313 - 45.9
PatchAlign [17] | 824 380 786 87 06 260 39 11.1 755 846 535 21.6 714 32,6 193 31.7| 400 46.5
CLAN [11] 813 370 801 - - - 16.1 137 782 815 534 212 73.0 329 226 307 - 47.8
ADVENT [18] 856 422 79.7 87 04 259 54 81 804 84.1 579 238 733 364 142 33.0| 412 48.0
CBST [31] 68.0 299 763 108 14 339 228 295 776 783 60.6 283 81.6 235 188 39.8| 42.6 48.9
DADA [19] 89.2 448 814 68 03 262 86 11.1 81.8 840 547 193 79.7 40.7 140 38.8| 426 49.8
MRKLD [32] 67.7 322 739 107 1.6 374 222 312 80.8 80.5 608 29.1 82.8 25.0 194 453| 438 50.1
BDL [9] 86.0 46.7 803 - - - 141 11.6 79.2 813 54.1 279 737 422 257 453 - 51.4
CAG [28] 847 408 817 7.8 00 351 133 227 845 776 642 278 809 19.7 227 483| 445 51.5
PIT [12] 83.1 276 815 89 03 218 264 338 764 788 642 276 79.6 312 31.0 31.3| 440 51.8
SIM [22] 83.0 440 803 - - - 17.1 158 80.5 81.8 599 33.1 702 37.3 285 458 - 52.1
FDA [25] 793 350 732 - - - 199 240 61.7 826 614 31.1 839 40.8 384 51.1 - 52.5
FADA [20] 845 40.1 831 48 00 343 201 272 848 840 535 22.6 854 437 268 27.8| 452 52.5
APODA [24] 864 413 793 - - - 226 173 803 81.6 569 21.0 84.1 49.1 24.6 457 - 53.1
DACS [15] 80.6 251 819 215 29 372 227 240 837 908 67.6 383 829 389 285 47.6| 483 54.8
Seg-Uncert. [29] | 87.6 419 83.1 147 1.7 362 313 199 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1| 479 54.9
CTF [13] 7577 300 819 115 25 353 18.0 327 862 90.1 651 332 833 365 353 543| 482 55.5
IAST [14] 819 415 833 177 46 323 309 288 834 850 655 30.8 865 382 331 52.7| 498 57.0
SAC[I] 893 472 855 265 1.3 43.0 455 320 87.1 893 63.6 254 869 356 304 53.0| 526 59.3
ProDA [27] 878 457 846 37.1 06 440 546 370 881 844 742 243 882 51.1 40.5 456| 555 62.0
CorDA [21] 93.3 61.6 853 196 5.1 378 36.6 428 849 904 69.7 418 856 384 326 539| 550 62.8
DAFormer (Ours) | 84.5 40.7 884 415 6.5 50.0 550 54.6 860 89.8 732 48.2 872 532 539 617| 60.9 67.4




DAFormer uses the last checkpoint of a training for eval-
uation. The reported results are averaged over three train-
ing runs and have a standard deviation of 0.5 mIoU on both
benchmarks, which shows that the training process is stable.
We do not use the target validation dataset for checkpoint
selection in contrast to some other works [27, 28].

J. Discussion
J.1. Limitations

Due to computational constraints, we only use a selec-
tion of network architectures to support our claims. How-
ever, there are further interesting architectures that could be
explored in the future such as [10,26]. Also, other training
aspects such as larger batch sizes could be of relevance.

In Fig. 3 of the main paper and in the discussion of the
Synthia results in Sec. I, there have been some indications
that a Transformer architecture is not ideal for stuff-classes.
This might be due to the shape-bias of Transformers [2].
The focus on shape instead of texture might be disadvan-
tageous for the distinction of stuff-classes as the texture is
an important aspect for their recognition. Even though a
further investigation is out of the scope of this work, we be-
lieve that this is an interesting aspect for future work, which
could potentially lead to a network architecture, even better
suited for UDA.

Context-aware fusion assumes that context correlations
are domain-invariant. This is often the case for the typi-
cal UDA benchmarks [30]. However, this assumption can
break down for some special cases in other domains, where
the context misleads the model (e.g. misclassification of a
cow on road as a horse) [7].

RCS is designed to counter a long-tail data distribution
of the source dataset. It is unproblematic for RCS if a class
is more common in the target dataset than in the source
dataset (e.g. bicycle) as it is balanced by RCS on the source
domain and regularly sampled on the target domain. If a
class is extremely rare in the target dataset, it might happen
that this class is not sampled often enough for efficient adap-
tation. Therefore, the pseudo-labels would not contain this
class and, conceptually, it would not be possible to specifi-
cally select samples with this class from the target data.

As shown in the error cases in Sec. H, our method
struggles with differences in the annotation policy between
source training data and target evaluation data. One exam-
ple is the bicycle wheel. While the entire wheel is seg-
mented in Cityscapes (see Fig. S3a), only the tires and
spokes are segmented in GTA (see Fig. S3b). Also, there
are corner cases, where the annotation policy is not defined
by source labels such as cycle paths on road (see the top
row in Fig. S11) or small busses (see the bottom row in
Fig. S12). In order to resolve these issues, additional infor-
mation about the annotations policy and corner cases would

be necessary. A potential solution might be the use of a few
target training labels as studied in semi-supervised domain
adaptation.

J.2. Potential Negative Impact

Our work improves the adaptability of semantic segmen-
tation, which can be used to enable many good applications
such as autonomous driving. However, UDA might also
be utilized in undesired applications such as surveillance
or military UAVs. This is a general problem of improv-
ing semantic segmentation algorithms. A possible counter-
measure could be legal restrictions of the use cases for se-
mantic segmentation algorithms.
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