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A. Overview
The supplementary material provides further details on

DAFormer as well as additional experimental results and
analysis. In particular, Sec. B provides further implementa-
tion details, Sec. C discusses the class statistics of sampling
with and without RCS, Sec. D provides an ablation of the
training strategies with DeepLabV2, Sec. E studies the pa-
rameter sensitivity of RCS and FD, Sec. F ablates the UDA
self-training, Sec. G compares the runtime and memory
consumption, Sec. H analyzes example predictions, Sec. I
compares DAFormer with additional previous UDA meth-
ods, and Sec. J discusses limitations of DAFormer.

B. Source Code and Further Details
The source code to reproduce DAFormer and all ab-

lation studies is provided at https://github.com/
lhoyer/DAFormer. Please, refer to the contained
README.md for further information such as the environ-
ment and dataset setup.

For the distinction of thing- and stuff-classes, we follow
the definition by Caesar et al. [3]. Applied to Cityscapes,
thing-classes are traffic light, traffic sign, person, rider, car,
truck, bus, train, motorcycle, and bicycle and stuff-classes
are road, sidewalk, building, wall, fence, pole, vegetation,
terrain, and sky.

C. Rare Class Sampling Statistics
Most (real-world) datasets have an imbalanced class dis-

tribution. This is also the case for the used source datasets
as can be seen in Fig. S1 in the blue bars. Please note that
the y-axis is scaled logarithmically so that the rare classes
are still visible. This problem is addressed by RCS by sam-
pling images with rare classes more often as discussed in
Sec. 3.3 of the main paper. Therefore, more pixels of the
re-sampled images belong to the rare classes as can be seen
in the orange bars of Fig. S1, which directly results in a sig-
nificantly improved IoU for these rare classes as can be seen
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Figure S1. Class statistics of the corresponding dataset for 10k
samples. Note that the y-axis is scaled logarithmically. RCS sam-
ples images with rare classes more often than random sampling.

in Fig. 6 of the main paper. The RCS temperature T = 0.01
is chosen to (approximately) maximize the number of re-
sampled pixels of the class with the least re-sampled pixels
as described in Sec. 3.3 of the main paper. This strategy
results in a balance of the number of re-sampled pixels of
the classes with the least re-sampled pixels as can be seen
in the orange bars of Fig. S1a for the classes traffic light and
bicycle.

Further, Fig. S2 shows the RCS class sampling proba-
bilities P (c) from Eq. 7 in the main paper for the default
RCS temperature T = 0.01. It can be seen that the class
sampling probability for rare classes is higher than for com-
mon classes as expected. For some common classes such as
road and sky, P (c) is very close to zero. As these common
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Figure S2. RCS class sampling probability P (c) from Eq. 7 in the
main paper with an RCS temperature of T = 0.01.

Table S1. Ablation of the components of the UDA framework
for SegFormer and DeepLabV2. Mean and standard deviation are
calculated over 3 random seeds.

Network Warmup RCS FD mIoU

SegF. [23] – – – 51.8 ±0.8
SegF. [23] X – – 58.2 ±0.9
SegF. [23] X – X 61.7 ±2.6
SegF. [23] X X – 64.0 ±2.4
SegF. [23] X X X 66.2 ±1.0
DLv2 [4] – – – 49.1 ±2.0
DLv2 [4] X – – 54.2 ±1.7
DLv2 [4] X – X 55.5 ±1.3
DLv2 [4] X X – 55.7 ±0.5
DLv2 [4] X X X 56.6 ±1.2

classes are part of almost every image, it is not necessary to
specifically sample images containing these particular com-
mon classes.

D. Training Strategies for DeepLabV2

Tab. S1 shows the performance of the improved UDA
training strategies for the DeepLabV2 architecture in ad-
dition to the SegFormer architecture from the main paper.
It demonstrates that learning rate warmup, RCS, FD, and
their combination are all beneficial for DeepLabV2 as well.
However, the performance improvement for SegFormer is
significantly larger than for DeepLabV2, supporting our hy-
pothesis that the network architecture is crucial for UDA
performance.

Table S2. Hyperparameter sensitivity study for RCS and FD. The
default parameters are marked with *. The evaluation setup is
equivalent to row 8 in Tab. 5 of the main paper.

RCS T mIoU

0.001 65.6
0.002 66.8
0.01* 66.8
0.05 66.8
0.1 65.5

λFD mIoU

0.001 65.8
0.002 66.2
0.005* 66.8
0.01 66.5
0.02 65.8

Table S3. Ablation of UDA self-training (ST, see Sec. 3.1 in the
main paper) with and without RCS and FD. Warmup is enabled
in all configuration. The experiments are conducted with Seg-
Former [23] and complement Tab. 5 in the main paper.

w/o (RCS+FD) w/ (RCS+FD)

w/o ST 45.6±0.6 50.7±0.3
w/ ST 58.2±0.9 66.2±1.0

E. Parameter Sensitivity of RCS and FD
To analyze the sensitivity of the parameters of FD and

RCS, Tab. S2 shows a study of T for RCS and λFD for FD.
It can be seen that RCS is stable up to a deviation of factor
5 from the default value. For FD, the weighting is stable
up to a factor of about 2. Given that both default values
are chosen according to an intuitive strategy (maximization
of re-sampled pixels for the class with the least re-sampled
pixels for T and gradient magnitude balance for λFD ), the
robust range of the hyperparameters is sufficient to select a
good value according to the described strategy.

F. Ablation of Self-Training
As FD and RCS operate on source data, they can also

be used to improve the domain generalization ability of
a model trained only on the source domain without self-
training (ST) on the target domain. Without ST (row 1 in
Tab. S3), RCS and FD increase the network performance
by +5.1 mIoU, demonstrating their benefit for domain gen-
eralization. Combined with ST (row 2 in Tab. S3), their im-
provement even increases to +8.0 mIoU showing that RCS
and FD reinforce ST, confirming their particular importance
for UDA as well.

G. Runtime and Memory Consumption
DAFormer can be trained on a single RTX 2080 Ti GPU

within 16 hours (0.7 it/s) while requiring about 9.6 GB
GPU memory during training. It has a throughput of 8.7
img/s for inference. In Tab. S4, DAFormer is compared
with other network architectures and UDA methods with
respect to runtime and memory consumption. Even though
DAFormer is heavier than DeepLabV2 and SegFormer, it



Table S4. Runtime and memory consumption of different network
architectures and UDA methods on a single RTX 2080 Ti GPU.

UDA Method Network
Training

Throughput
(it/s)

Inference
Throughput

(img/s)

Training
GPU

Memory

Num.
Params

ST DLv2 [4] 1.24 11.3 5.6 GB 43.2M
ST SegF. [23] 0.95 8.9 7.7 GB 84.6M
ST+RCS+FD DLv2 [4] 0.91 11.3 8.6 GB 43.2M
ST+RCS+FD SegF. [23] 0.75 8.9 8.8 GB 84.6M
ST+RCS+FD DAFormer 0.71 8.7 9.6 GB 85.2M

(a) Bicycle annotation policy on Cityscapes

(b) Bicycle annotation policy on GTA

Figure S3. Different annotation policies for bicycle on Cityscapes
and GTA. It can be seen that the entire wheel is segmented as bi-
cycle for Cityscapes, while only the tire and spokes of the wheel
are segmented as bicycle for GTA.

requires only 12% more GPU memory and about 30% more
training/inference time than DeepLabV2 when the same
UDA configuration is used. When ablating the proposed
RCS and FD, the GPU memory consumption is further re-
duced by 54% and the training time is decreased by 36%
mainly due to the additional ImageNet encoder and the fea-
ture distance calculation. However, as this is only relevant
for training, the inference throughput is the same.

H. Qualitative Analysis

Comparison with ProDA The better performance of
DAFormer compared to ProDA [27] is also reflected in ex-
ample predictions shown in column 4 and 5 of Fig. S4-S9.
The major improvements come from a better recognition of
the classes train (Fig. S4), bus (Fig. S5), truck (Fig. S6),
car (Fig. S7), and sidewalk (Fig. S8) across different per-
spectives, object sizes, and appearances. Fig. S9 also shows
a better recognition of rider, bicycle, and fence. Further-
more, in the shown examples, it can generally be seen that
DAFormer better segments fine structures, which is espe-
cially beneficial for small classes such as pole, traffic sign,
and traffic light.

Domain Generalization Additionally, column 2 and 3 of
Fig. S4-S9 compare the source-only training of DeepLabV2
and SegFormer. It can be seen that SegFormer better gen-
eralizes from the source training to the target domain than
DeepLabV2. Still, there is a considerable gap between Seg-
Former with source-only training and DAFormer, showing
that the adaptation to the target domain is essential.

Error Cases To give additional insights into the limita-
tions of DAFormer, Fig. S10-S14 show some of the typi-
cal error cases. This includes confusion of sidewalk and
road if the texture is similar or there are cycle path mark-
ings (Fig. S10), confusion of wall and fence (Fig. S11), mis-
classification of some special vans (Fig. S12), misclassifica-
tion of partly-occluded busses (Fig. S13), misclassification
of persons close to bikes (Fig. S14 top), misclassification
of standing riders (Fig. S14 bottom), and segmentation of
only the bicycle tires (Fig. S14 bottom). That only the tires
and not the inside of the wheel of a bicycle are segmented is
caused by the annotation policy of GTA (see Fig. S3). Note
that for many of the error cases, also previous methods such
as ProDA experience similar issues.

I. Comparison with Previous Methods
In the main paper, we compare DAFormer with a se-

lection of representative UDA methods. However, vari-
ous other UDA methods were proposed in the last few
years. A comprehensive comparison with these is shown
in Tab. S5 for GTA→Cityscapes and in Tab. S6 for
Synthia→Cityscapes. On the one side, some of the newly
shown methods can achieve a higher IoU for specific classes
than the previous methods shown in the main paper, but on
the other side, their performance suffers for other classes.
Therefore, ProDA [27] still achieves the best mIoU of the
previous state-of-the-art methods. Overall, DAFormer is
able to outperform all previous works both in mIoU and
classwise IoU for GTA→Cityscapes, often by a consider-
able margin. On Synthia→Cityscapes, this statement holds
except for the stuff-classes road, sidewalk, vegetation, and
sky. This might be due to the shape-bias of Transform-
ers [2], which causes the network to focus more on shape
than texture. The shape bias could improve the generaliza-
tion ability for thing-classes as their shape is more domain-
robust than their texture. However, for stuff-classes, the tex-
ture is sometimes crucial to distinguish similar classes such
as road and sidewalk and a shape-bias could be hindering.

The results in Tab. S5 and Tab. S6 are reported with the
training configurations used in the original methods, which
do not use learning rate warmup. For a fair comparison, we
have re-implemented DACS [15] with our training configu-
ration including learning rate warmup, which achieves 54.2
mIoU on GTA→Cityscapes. Still, DAFormer outperforms
it by +14.1 mIoU.



Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S4. Example predictions showing a better recognition of train as opposed to bus by DAFormer on GTA→Cityscapes.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S5. Example predictions showing a better recognition of bus by DAFormer on GTA→Cityscapes.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S6. Example predictions showing a better recognition of truck by DAFormer on GTA→Cityscapes.



Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S7. Example predictions showing a better recognition of car as opposed to truck by DAFormer on GTA→Cityscapes.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S8. Example predictions showing a better recognition of sidewalk as opposed to road by DAFormer on GTA→Cityscapes.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S9. Further example predictions on GTA→Cityscapes showing a better recognition of bicycle, rider, and fence.



Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

road sidew. build. wall fence pole tr. light tr. sign veget. terrain sky person rider car truck bus train m.bike bike n/a.

Figure S10. Typical error cases on GTA→Cityscapes: Confusion of sidewalk and road if the texture is similar.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S11. Typical error cases on GTA→Cityscapes: Confusion of wall and fence.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S12. Typical error cases on GTA→Cityscapes: Misclassification of special vans.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S13. Typical error cases on GTA→Cityscapes: Misclassification of partly-occluded busses.

Image DeepLabV2 Src-Only SegFormer Src-Only ProDA [27] DAFormer (Ours) Ground Truth

Figure S14. Typical error cases on GTA→Cityscapes: Misclassification of persons close to bikes (top row), standing riders (bottom row),
and missing segmentation of the inside of the bicycle wheel (bottom row).



Table S5. Comparison with previous methods on GTA→Cityscapes. Our results (DAFormer) are averaged over 3 random seeds.

Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

AdaptSeg [16] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
CyCADA [6] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
CLAN [11] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
ADVENT [18] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
APODA [24] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9
CBST [31] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
PatchAlign [17] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5
MRKLD [32] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
BDL [9] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
FADA [20] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
CAG [28] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
Seg-Uncert. [29] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
FDA [25] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
PIT [12] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6
IAST [14] 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5
DACS [15] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
SAC [1] 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8
CTF [13] 92.5 58.3 86.5 27.4 28.8 38.1 46.7 42.5 85.4 38.4 91.8 66.4 37.0 87.8 40.7 52.4 44.6 41.7 59.0 56.1
CorDA [21] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDA [27] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAFormer (Ours) 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

Table S6. Comparison with previous methods on Synthia→Cityscapes. Our results (DAFormer) are averaged over 3 random seeds.

Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Sky Person Rider Car Bus M.bike Bike mIoU16 mIoU13

SPIGAN [8] 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8 42.4
GIO-Ada [5] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3 43.0
AdaptSeg [16] 79.2 37.2 78.8 – – – 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 – 45.9
PatchAlign [17] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5
CLAN [11] 81.3 37.0 80.1 – – – 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 – 47.8
ADVENT [18] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0
CBST [31] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9
DADA [19] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6 49.8
MRKLD [32] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
BDL [9] 86.0 46.7 80.3 – – – 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 – 51.4
CAG [28] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 51.5
PIT [12] 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 78.8 64.2 27.6 79.6 31.2 31.0 31.3 44.0 51.8
SIM [22] 83.0 44.0 80.3 – – – 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 – 52.1
FDA [25] 79.3 35.0 73.2 – – – 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 – 52.5
FADA [20] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5
APODA [24] 86.4 41.3 79.3 – – – 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 – 53.1
DACS [15] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
Seg-Uncert. [29] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
CTF [13] 75.7 30.0 81.9 11.5 2.5 35.3 18.0 32.7 86.2 90.1 65.1 33.2 83.3 36.5 35.3 54.3 48.2 55.5
IAST [14] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0
SAC [1] 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 52.6 59.3
ProDA [27] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
CorDA [21] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 55.0 62.8
DAFormer (Ours) 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 60.9 67.4



DAFormer uses the last checkpoint of a training for eval-
uation. The reported results are averaged over three train-
ing runs and have a standard deviation of 0.5 mIoU on both
benchmarks, which shows that the training process is stable.
We do not use the target validation dataset for checkpoint
selection in contrast to some other works [27, 28].

J. Discussion

J.1. Limitations

Due to computational constraints, we only use a selec-
tion of network architectures to support our claims. How-
ever, there are further interesting architectures that could be
explored in the future such as [10, 26]. Also, other training
aspects such as larger batch sizes could be of relevance.

In Fig. 3 of the main paper and in the discussion of the
Synthia results in Sec. I, there have been some indications
that a Transformer architecture is not ideal for stuff-classes.
This might be due to the shape-bias of Transformers [2].
The focus on shape instead of texture might be disadvan-
tageous for the distinction of stuff-classes as the texture is
an important aspect for their recognition. Even though a
further investigation is out of the scope of this work, we be-
lieve that this is an interesting aspect for future work, which
could potentially lead to a network architecture, even better
suited for UDA.

Context-aware fusion assumes that context correlations
are domain-invariant. This is often the case for the typi-
cal UDA benchmarks [30]. However, this assumption can
break down for some special cases in other domains, where
the context misleads the model (e.g. misclassification of a
cow on road as a horse) [7].

RCS is designed to counter a long-tail data distribution
of the source dataset. It is unproblematic for RCS if a class
is more common in the target dataset than in the source
dataset (e.g. bicycle) as it is balanced by RCS on the source
domain and regularly sampled on the target domain. If a
class is extremely rare in the target dataset, it might happen
that this class is not sampled often enough for efficient adap-
tation. Therefore, the pseudo-labels would not contain this
class and, conceptually, it would not be possible to specifi-
cally select samples with this class from the target data.

As shown in the error cases in Sec. H, our method
struggles with differences in the annotation policy between
source training data and target evaluation data. One exam-
ple is the bicycle wheel. While the entire wheel is seg-
mented in Cityscapes (see Fig. S3a), only the tires and
spokes are segmented in GTA (see Fig. S3b). Also, there
are corner cases, where the annotation policy is not defined
by source labels such as cycle paths on road (see the top
row in Fig. S11) or small busses (see the bottom row in
Fig. S12). In order to resolve these issues, additional infor-
mation about the annotations policy and corner cases would

be necessary. A potential solution might be the use of a few
target training labels as studied in semi-supervised domain
adaptation.

J.2. Potential Negative Impact

Our work improves the adaptability of semantic segmen-
tation, which can be used to enable many good applications
such as autonomous driving. However, UDA might also
be utilized in undesired applications such as surveillance
or military UAVs. This is a general problem of improv-
ing semantic segmentation algorithms. A possible counter-
measure could be legal restrictions of the use cases for se-
mantic segmentation algorithms.
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