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Here we give additional details for the main paper
P. Hruby, T. Duff, A. Leykin, T. Pajdla. Learning to Solve
Hard Minimal Problems. CVPR 2022.
including an analysis of the 5pt and Scranton minimal prob-
lem solutions, details of our efficient homotopy continua-
tion implementation, and experiments justifying our engi-
neering choices. We also attach our code which will be
made publicly available on Github.

11. A classical example of a minimal problem
A classical, easy, but still essential, minimal problem in

computer vision is computing the pose of a calibrated per-
spective camera [28] from three points in space and their
image projections [25, 26, 33, 42, 51]. In one of its classical
formulations [25], it leads to a polynomial system of three
equations

∣∣X1 −X2∣∣2 = ∣∣λ1u1 − λ2u2∣∣2

∣∣X2 −X3∣∣2 = ∣∣λ2u2 − λ3u3∣∣2

∣∣X3 −X1∣∣2 = ∣∣λ3u3 − λ1u1∣∣2

of degree two in three unknown depths λ1, λ2, λ3. Param-
eters of the problem are three 3D points Xi ∈ R3 and ho-
mogeneous coordinates ui ∈ R2 of three image projections,
altogether on 3 × 3 + 3 × 2 = 15 parameters. For generic
data, the system has eight complex solutions for λ’s with up
to eight real solutions [22]. However, often, there are only
zero, two, or four real solutions with positive λ’s.

This example illustrates a typical situation occurring in
minimal problem solving. The minimal problem obtained
by relaxing a geometrical optimization problem, which has
one optimal solution, brings in seven additional (spurious)
solutions. In this case, there are always at least two real
solutions corresponding to seeing the three points from the
opposite sides of the plain they span.

12. Interesting hard minimal problems

Recent results [15, 16] suggest that solving minimal
problems with many complex solutions is interesting. A
complete classification of minimal problems for points,
lines, and their incidences in the calibrated multi-view ge-
ometry appeared for the case of complete multi-view visi-
bility [15]. It has been found that there are only 30 minimal
problems in that setting, but it also became clear that prob-
lems involving more than two cameras are hard for the cur-
rent symbolic-numeric and homotopy continuation solvers.
The number of solutions for three views starts with 64, in-
teresting cases have 200+ solutions, and 5-view cases have
10000+ solutions. Allowing for occlusion or missed detec-
tion in images leads to even harder problems. The follow-
up work [16] developed a complete classification of mini-
mal problems for generic arrangements of points and lines
in space, observed partially by three calibrated perspective
cameras when each line is incident to at most one point.
It has been found that there is an infinite number of such
minimal problems arranged into 74575 equivalence classes
when caring only about camera configurations. Interest-
ingly, this classification involves all calibrated trifocal ge-
ometry of computer vision for nonincident points and lines
in space. Out of 74575 classes, only 759 classes have less
than 300 solutions. The rest have (many) more solutions.
Thus, for many interesting and potentially practical prob-
lems, computing all solutions in a reasonable time is a task
beyond the reach of current symbolic-numeric and homo-
topy continuation solving methods.

13. Examples of problem-solution manifolds
worked out in detail

Let us now provide a detailed explanation of the
problem-solution manifold concept introduced in Sec. 2.1



Figure 5. Illustration of generating anchors. A minimal sample of cameras and points is sampled from an existing 3D model. Then, the
sampled geometry is converted to the problem-solution pairs. A graph is built whose nodes are the sampled problem-solution pairs. HC
is tracked from every p-s pair to every other p-s pair. If the obtained solution is equal to the sampled solution, the p-s pairs are connected
with an edge. The selected anchors are a vertex cover of the graph obtained with a greedy algorithm.

for the 5pt and 4pt problems solved in this work.

Example 3. Consider the 5pt problem of computing the
relative pose of two calibrated cameras from 5 corre-
spondences in two images,i.e., two 3 × 4 matrices C1 =
[R1 t1] = [I 0] , C2 = [R2 t2] in the special
Euclidean group SER(3), which view five world points
X1, . . . ,X5 ∈ R3 where X1 is normalized to lie in the first
image plane: {X1 ∣X(3)1 = 1} ≅ R2. The points are in front
of both cameras iff their depths

λi,j = λi,j(X,C) = Rj
(3,∶)Xi + t(3)j

are all positive (Rj
(3,∶) is the third row of Rj and t

(3)
j the

third entry of ti.) Consider

Ψ5pt ∶ (R2 × (R3)4) × SER(3) → (R2)10 ×R9

(X , C) ↦ (x,λ)

where

x = (λ−1i,j (RjXi + tj)(1∶2))
i=1,...,5; j=1,2; (i,j)≠(1,1)

. (3)

Here the problem space is P = (R2)10 the solution space
is S = R9, π(x,λ) = x, and our problem-solution manifold
M = M5pt is the set of smooth points in the semialgebraic
set im(Ψ5pt) ∩ ((R>0)9 × (R2)10) .

Remark 1. For a generic problem x ∈ M5pt, the fiber
π−1(x) consists of at most 10 solutions λ > 0, and every
such λ can be extended uniquely to a pair (X,C) ↦ (x,λ).

Remark 2. Our assumptions in Example 3 imply that
λ1,1 = 1. In subsequent sections, we treat the five-point
problem as a system of equations in the nine remaining un-
known depths. More generally, we could dehomogenize our
system by setting any linear form in λ’s equal to 1.

Example 4. Consider the Scranton relaxation of the 4pt
problem computing the relative pose of three calibrated

cameras from 4 correspondences in 3 images. We have 4
world points X1, . . . ,X4 with X

(3)
1 = 1 and three cam-

eras C1 = [I 0] , C2 = [R2 t2] , C3 = [R3 t3] such
that cameras C1,C2,C3 view X2, . . . ,X4, cameras C2,C3

view X1, and camera C1 views the line ℓ in the direction
e2 = [0 1 0]⊺ that passes through X1, parametrized as
ℓ(l) =X1 + le2. Now, we have a map

ΨScr ∶ (R2 × (R3)3 ×R) × (SER(3))2 → (R2)12 ×R12

((X, l) , C) ↦ (x, (λ, l))

where xi,j are as in Eq. (3) except that

x1,1 = (Xi + tj − le2)(1∶2) .

Here the problem space is P = (R2)12 the solution space is
S = R12, π(x,λ) = x, and our problem-solution manifold
M =MScr is the set of smooth points in the semialgebraic
set im(ΨScr) ∩ ((R>0)11 ×R × (R2)12) .

14. Additional details for 5pt formulation
Here we provide additional details concerning the solu-

tions of the depth-formulated 5pt problem developed in Sec-
tion 7.1. Recall the system (1) of 10 equations in 9 un-
known normalized depths. It has 80 solutions for generic
parameters vi,j . There are two isolated singular solutions
λ = [1,0,0,0,0;±a,0,0,0,0], with multiplicity 20, and 40
isolated nonsingular solutions. Among the 40 nonsingular
solutions, there are at most 10 with all depths positive which
extend to a rotation with detR2 = 1.

Given (x,λ) ∈ M5pt, we first note that a valid rotation
matrix R(x,λ)may be estimated by computing certain aux-
iliary quantites: for i ∈ {1, . . . ,5} and v ∈ {1,2}, we define
Xi,v = λi,vxi,v, and, for distinct i, j, k ∈ {2,3,4,5},

A
(v)
i,j,k = ( Xi,v −X1,v Xj,v −X1,v Xk,v −X1,v ) .

Thus, detA(v)i,j,k gives the oriented volume of a tetrahedron
whose vertices are X1,v,Xi,v,Xj,v,Xk,v. To estimate the



rotation from a geometrically meaningful solution, one may
compute either

R2(x,λ) = A(2)2,3,4 (A
(1)
2,3,4)

−1
(4)

or

R2(x,λ) = A(2)2,3,5 (A
(1)
2,3,5)

−1
. (5)

Not all solutions to Equation (1) satisfy the additional
constraint detR2(x,λ) = 1, since there is a sign-symmetry
λi,v ↦ (−1)v+1λi,v which changes the sign of detR2(x,λ)
but leaves Equation (1) invariant. Furthermore, the square
subsystem obtained by dropping one of these equations has
160 solutions, counted with multiplicity. The two singu-
lar solutions λ = [1,0,0,0,0;±a,0,0,0,0] now have mul-
tiplicity 32 and the number of nonsingular solutions rises
to 96. Among these 96 nonsingular solutions, 76 are spu-
rious. This set of spurious solutions includes 20 spurious
solutions to the 10 equations with detR2 = 1. For each of
the 76 spurious solutions, either of the matrices in Eq. (4)
or Eq. (5) may have determinant −1. Thus, they may be
ruled out by enforcing det = 1 for both of these matrices;
alternatively, we may enforce this constraint for one matrix
and the dropped equation from Equation (1).

The preceding arguments illustrate that the 5pt problem,
regardless of the particular equations used, has at most 20
geometrically solutions. Moreover, there is an additional
symmetry given by the “twisted pair” [28, Fig. 9.12]: letting

t(x,λ) = λ1,2v1,2 −R(x,λ)λ1,1v1,1,

we define tw(x,λ) coordinate-wise fixing x and

tw(λi,j) =
(−1)j+1 ∥t(x,λ)∥2 λi,j

∥λi,2vi,2∥2 − ∥λi,1vi,1∥2
.

The map on p-s pairs (x,λ) ↦ (x, tw(x,λ)) reverses the
signs of depths in the second view. This justifies our claim
that there are at most 10 geometrically meaningful solutions
to Eq. (1). We remark that the partition of 20 solutions
into twisted pairs is preserved along non-singular solution
curves computed by our HC method.

15. Additional details for Scranton formula-
tion

Unlike the system used for the 5pt problem, the square
system for Scranton has infinitely many solutions. Recall
that this system is given by the relaxed depth constraint

∣∣v1,1 + l [0; 1; 0] − λm,1vm,1∣∣2 = ∣∣λ1,2v1,2 − λm,2vm,2∣∣2

and Eq. (2) for remaining points and cameras. A one-
dimensional family of solutions may be obtained by setting

all depths except λ1,1, λ1,2, λ1,3 to 0, resulting in 2 nontriv-
ial equations in the remaining 3 unknowns: namely,

∣∣v1,1 + l [0; 1; 0]∣∣2 = ∣∣λ1,2v1,2∣∣2

∣∣λ1,2v1,2∣∣2 = ∣∣λ1,3v1,3∣∣2

The square system for Scranton also has several fami-
lies of isolated singular solutions where certain depths equal
0. However, for generic data, the number of nonsingu-
lar solutions equals the number of solutions with nonzero
depths, which is 1408. Among these, there is a four-fold
sign symmetry where λi,2 ↦ ±λi,2, λi,3 ↦ ±λi,3, and
320 = 4 × 80 cannot be lifted to a valid pair of rotations
(R2(x,λ),R3(x,λ)) .

Taking these facts into account, there are at most 1408 −
3×272−4×80 = 272 geometrically relevant solutions on the
problem-solution manifold. This agrees with the number of
solutions reported in both [32] and [16], where formulations
in terms of trifocal tensors and camera matrices, respec-
tively, were employed. We note that, unlike the five-point
problem, there is no further reduction in the number of so-
lutions implied by a symmetry such as the twisted pair; this
follows by numerically computing the Galois group associ-
ated to Scranton, using techniques described in [17], which
turns out to be the symmetric group on 272 letters.

16. Additional details on HC methods
As noted in Sec. 6, our homotopy H depends on the

choice of a path p(t) connecting p0 to p, where (p0, s0)
is a known p-s pair and p is the problem to be solved. In
all of our experiments, we consider one of two choices.
Mostly, we use 1) Linear segment HC: that is, we choose
p(t) = (1 − t)p0 + t p. This linear segment homotopy has
several advantages; among them, the straight-line programs
needed to evaluate H and its derivatives are much simpler
than for other paths, and the fact that p(t) is real-valued
for all t. However, under Linear segment HC, a differen-
tiable solution curve s(t) satisfying H(p(t), s(t)) = 0 need
not exist for all t ∈ [0,1]. For instance, a problem with
singular solutions may exist somewhere along the segment
connected in P connecting p0 and p. However, the solu-
tion curve s(t) will exist for all t ∈ [0,1] if p0 and p are
“close enough”—more precisely, if p(t) avoids the lower-
dimensional set of critical values of π in P for all t ∈ [0,1].

Alternatively, one may consider 2) Circular arc HC:
here, we reparametrize the segment p(t) via a circular arc
t(τ) ∶ [0,1] → [0,1] obtained by fixing a random γ ∈ C
(typically of modulus 1) and t(τ) = γ τ

1+(γ−1)τ . This is the
γ-trick of [63, Lemma 7.1.3 ]. Numerical continuation with
the resulting homotopy H(s, τ) is globally convergent with
probability one: for almost all choices of γ, the solution
curves s(t) are defined for all t ∈ [0,1], and any isolated
target solution (p, s) is the endpoint of some solution curve.



Figure 6. Illustration of generating training data and training the classifier. A minimal sample of cameras and points is sampled from an
existing 3D model. Then, the sampled geometry is converted to the problem-solution pairs. Every generated problem-solution pair (p, s)
is tracked from every anchor (p0, s0). If the correct solution is obtained, problem p is added to the training data, whereby the ID of the
anchor (p0, s0) is used as the expected label. Then, the MLP is trained on the generated training data.

Figure 7. Illustration of testing the classifier. A minimal sample p is obtained in the RANSAC scheme. Then, the sample is normalized.
The normalized sample is used as the input to the trained MLP, which selects the starting p-s pair (p0, s0). Then, HC is tracked from
(p0, s0) to p. If a solution s is obtained, it is converted to a relative pose and the RANSAC score of it is evaluated.

However, this necessitates computing many spurious solu-
tions. An experimental comparison of Linear segment and
Circular arc HC may be found in Tab. 7.

We now explain why the square systems used in our
homotopies are sufficient when starting from a p-s pair
on the problem-solution manifold. Consider a path t ↦
(p(t), s(t)) ∈ P × S where (p(0), s(0)) = (p0, s0) ∈ M
and such that that the n×n Jacobian matrix dH

ds
(p(t), s(t))

has rank n for all t ∈ [0,1]. Thus, the path t ↦ (p(t), s(t))
is contained in a single connected component of the set of
nonsingular points in the complex vanishing set {(p, s) ∈
PC × SC ∣ f(p, s) = 0}. Among these connected compo-
nents is the set of smooth points in the Zariski closure of
M . Indeed, the complex Zariski closure of M has a ratio-
nal parametrization (given by one of the maps Ψ5pt,ΨScr

defined in Sec. 13), so it is irreducible, and the connected-
ness of its smooth points follows by [24, pp. 21–22]. Since
the point (p0, s0) is contained in this connected component,
so also must (p(t), s(t)) for all t ∈ [0,1]. Thus, any poly-
nomial g(p, s) vanishing on M satisfies g(p(t), s(t)) = 0
for all t ∈ [0,1]. This means that, if HC tracking from
(p0, s0) ∈ M succeeds using our square system of con-
straints, then all additional constraints which are polyno-
mial equalities are automatically satisfied. This justifies
the fact that we do not explicitly enforce constraints like
detR2(x,λ) = 1, since it is enough to enforce them for the

initial p-s pair.

16.1. Efficient evaluation of predictor/corrector

The Runge-Kutta method used for the predictor step and
Newton’s method used for the corrector step in our HC im-
plementation both require solving systems of linear equa-
tions. In either step, the coefficient matrix is given by the
Jacobian ∂H(s,t)

∂s
(Sec. 6). In the case of the depth formula-

tion of the Five-Point problem (1) and the Four-Point prob-
lem (2), the associated Jacobian matrix is sparse. The spar-
sity pattern of the Jacobian matrix ∂H(s,t)

∂s
is shown in (6)

for the Five-Point problem, and in (7) for the Four-Point
problem.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0,3 0 0 0 A0,4 A0,5 0 0 0
0 A1,1 0 0 A1,4 0 A1,6 0 0

A2,0 A2,1 0 A2,3 0 0 A2,6 0 0
0 0 A3,2 0 A3,4 0 0 A3,7 0

A4,0 0 A4,2 0 0 A4,5 0 A4,7 0
0 A5,1 A5,2 0 0 0 A5,6 A5,7 0
0 0 0 A6,3 A6,4 0 0 0 A6,8

A7,0 0 0 A7,3 0 A7,5 0 0 A7,8

0 A8,1 0 A8,3 0 0 A8,6 0 A8,8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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Figure 8. An example of a 5pt problem after normalization of
image coordinates.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0,0 0 0 A0,3 A0,4 0 0 0 0 0 0 0

0 A1,1 0 A1,3 0 A1,5 0 0 0 0 0 0

A2,0 A2,1 0 0 A2,4 A2,5 0 0 0 0 0 0

0 0 A3,2 A3,3 0 0 A3,6 0 0 0 0 0

A4,0 0 A4,2 0 A4,4 0 A4,6 0 0 0 0 0

0 A5,1 A5,2 0 0 A5,5 A5,6 0 0 0 0 0

A6,0 0 0 0 0 0 0 A6,7 A6,8 0 0 0

0 A7,1 0 0 0 0 0 A7,7 0 A7,9 0 0

A8,0 A8,1 0 0 0 0 0 0 A8,8 A8,9 0 0

0 0 A9,2 0 0 0 0 A9,7 0 0 A9,10 A9,11
A10,0 0 A10,2 0 0 0 0 0 A10,8 0 A10,10 A10,11

0 A11,1 A11,2 0 0 0 0 0 0 A11,9 A11,10 A11,11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

Using generic methods such as LU decomposition, as
in previous work [21], numerical linear algebra becomes
a significant bottleneck in both the predictor and corrector
stages. To overcome this bottleneck, we replace the generic
numerical linear algebra with closed-form solutions to the
systems of linear equations with coefficient matrices (6) and
(7). This replacement results in about 5x speedup for both
problems.

17. Variations of the normalization
Let us provide additional details about our normalization

of problems to simplify their variability and thus to make
learning of the picking function σ easier.

Fig. 8 shows an example of the normalized 5pt problem.
The mean direction vectors m1,m2 in both images are at
[0; 0; 1]. The first correspondence, x1,1, x2,1 is on the x
axis. The first image is chosen such that it contains the
larger angle with its corresponding mu. This also means
that the first correspondence point has a larger x image co-
ordinate: x(1)1,1 >, x

(1)
2,1 . To make the normalized problems in-

dependent on the ordering of the correspondences, we sort
them by their polar angles in the coordinate system in the
the first image. Notice that their order may be swapped in
the second image, e.g., as for x2,2, x3,2. Such a swap is
mainly due to a large change of the order of depth of the
corresponding points in the scene, as seen from different
view points, which is in practice much less frequent than
keeping the order [67].

Our normalization is chosen as the best one among sev-
eral meaningful alternatives. The evaluation of the alterna-
tive normalization methods is shown in Tab. 5 for the 5pt
problem and in Tab. 6 for the Scranton problem. The ta-
bles show that our strategy, labeled by A, which rotates the
center of mass to zero and the farthest point on the x-axis,

Strategy Succ. rate Time inv. Time HC
No inv. 0.53% 0 14.25 µs
A. 3.73% 0.43 µs 11.80 µs
B. 3.70% 0.77 µs 11.88 µs
C. 2.29% 0.36 µs 11.19 µs
D. 1.56% 1.03 µs 12.18 µs
E. 0.71% 0.68 µs 10.44 µs

Table 5. Evaluation of the normalization for the 5 pt problem.
We have generated 4000 problem-solution pairs, normalized them
with a given strategy and tracked HC from every p-s pair to every
other. We consider strategies from Sec. 17. We measure the suc-
cess rate, average time of the normalization and of HC. The track
is considered successful if the squared Euclidean distance from the
obtained solution to the ground-truth is less than 10−5.

has the best success rate for both problems. Note that every
normalization strategy performs better than when tracking
without normalization.

The normalization strategies are as follows:

A. Rotate the center of mass to zero, rotate the point far-
thest from zero to x-axis.

B. Rotate the center of mass to zero with an iterative pro-
cedure, rotate the point farthest from zero to x-axis.

C. Rotate the closest point to center of mass to zero and
the point farthest from zero to x-axis.

D. Rotate the center of mass to zero and the maximal vari-
ance to x-axis.

E. Rotate the closest point to center of mass to zero and
the maximal variance to x-axis.

In the case of the Scranton problem, we also have to de-
cide which point in which view to relax on the line. Here,
we consider:

a) The farthest point and view.
b) The point rotated to zero (if possible).

Our normalization induces three linear constraints for
every view. The instance p of the 5pt problem consists of
2D projections of 5 points into two views, therefore p ∈ R20.
The normalized instances live in a 20 − 2 × 3 = 14 dimen-
sional subspace of R20. The instance p of the 4pt problem
consists of 2D projections of 4 points into 3 views, p ∈ R24.
The normalized instances live in a 24 − 3 × 3 = 15 dimen-
sional subspace of R24.

The values of the success rate in this experiment are low
because we use randomly sampled data and track from ev-
ery p-s pair to every other p-s pair. Tab. 9 shows that the
success rate significantly increases if we track from pres-
elected anchors which are chosen to perform well and we
select the best starting anchor with a trained classifier.



Strategy Line strategy Succ. rate Time inv. Time HC
No inv. - 0.21% 0 22.11 µs
A. a) 1.44% 0.50 µs 17.82 µs
B. a) 1.44% 1.16 µs 17.40 µs
C. a) 0.80% 0.82 µs 19.57 µs
C. b) 0.32% 0.78 µs 17.37 µs
D. a) 0.61% 1.39 µs 20.13 µs
E. a) 0.37% 1.01 µs 20.43 µs
E. b) 0.27% 0.93 µs 18.46 µs

Table 6. Evaluation of the normalization for the Scranton problem.
We have generated 4000 problem-solution pairs, normalized them
with a given strategy and tracked HC from every p-s pair to every
other. We consider strategies from Sec. 17. We measure the suc-
cess rate, average time of the normalization and of HC. The track
is considered successful if the squared Euclidean distance from the
obtained solution to the ground-truth is less than 10−5.

18. Study to justify engineering choices

Let us describe the data sets we use to study our engi-
neering choices.

Training data set D5pt consists of 40000 p-s pairs. We
randomly sample pairs of cameras and 5-tuples of 3D points
from the ETH 3D dataset [60] “Office” and “Terrains”.
Problem parameters p are 10D vectors of 2D image coor-
dinates obtained by projecting the sampled 5-tuples of 3D
points by the camera pairs. The corresponding solutions
s are 10D vectors of the depths of the 3D points in the
two cameras normalized to have the first depth equal to 1.
Data set DScr, consisting of 40000 p-s pairs, is constructed
analagously by sampling 4-tuples of 3D points and triplets
of cameras. Data sets are used to select anchor sets and to
train our model for selecting the starting problem-solution
pair.

Anchor sets A5pt
50 ,A

5pt
75 ,A

5pt
90 ,A

5pt
100 are selected by the

procedure described in Sec. 4 such that A5pt
50 ⊂ A5pt

75 ⊂
A5pt

90 ⊂ A
5pt
100 ⊂D5pt where A5pt

50 of 8 anchors covers 50% of
problems in D5pt, A5pt

75 of 26 anchors covers 75% of prob-
lems in D5pt, A5pt

90 of 70 anchors covers 90% of problems
in D5pt and A5pt

100 of 465 anchors covers 100% of problems
in D5pt. Data sets, AScr

50 , of 16 anchors, AScr
75 , of 50 an-

chors, AScr
90 , of 134 anchors and AScr

100, of 1205 anchors, are
constructed analagously from AScr.

Test data set V 5pt consists of 60000 p-s pairs constructed
as above from the ETH 3D dataset “Delivery area” and “Fa-
cade”. Data set V Scr, consisting of 60000 p-s pairs, is con-
structed analagously. We use V 5pt and V Scr in the exper-
iments studying anchor set selection methods reported in
Tab. 4.

18.1. Comparison of different tracking approaches

Data set P 5pt consists of of 3751 p-s pairs sampled from
the ETH 3D dataset “Courtyard”. A5pt and P 5pt are dis-
joint. All problems in P 5pt are checked to be generic and
can be used as good starting problem-solution pairs. We
select 20 random pairwise disjoint P 5pt

i ⊂ P 5pt consisting
of 50 problem-solution pairs. Data sets P Scr, consisting of
5727 problem-solutions pairs, and P Scr

i , consisting of 50
p-s pairs, are constructed analagously. We use P 5pt

i ’s and
P Scr
i in the experiments studying variations of the homo-

topy continuation methods reported in Tab. 7. In this table,
we measure the success rate for a given subset Pi as a per-
centage of different pairs pi,j ∈ Pi, pi,k ∈ Pi for which the
fabricated solution to the target problem pi,k can be recov-
ered when tracking from pi,j to pi,k. Then, we find the
mean success rate µs, and the standard deviation δs over all
subsets Pi, i ∈ {1, ...,20}.

Tab. 7 shows that for every setting, our evaluation
(Sec. 16.1) brings about 5x speedup over the previous work
[20] without any impact on the success rate.

The table also shows that Homotopy Continuation in the
complex domain tracked from every solution has almost
100% success rate, but the running time of the solver is pro-
hibitively slow to be used in the RANSAC scheme. We can
see that reducing the number of tracks, as well as tracking
in R instead of C can significantly reduce the running time
(about 10000x for the Scranton problem) at the cost of a
lower success rate. Note (Tab. 9), that the issue with the
low success rate may be remedied by selecting an appropri-
ate starting problem-solution pair (p0, s0) for every target
problem p.

Our ”Pick and Solve” method can use various ap-
proaches for tracking from the picked starting solution.
Apart from the Homotopy Continuation, we have consid-
ered the Newton method, which, according to Tab. 7 may
be a promising approach, as it has a higher success rate
and lower running time than Homotopy Continuation with
the same setting. Another interesting approach is to opti-
mize the original overconstrained problem with the Gauss-
Newton method. We have compared these tracking ap-
proaches: For all three tracking approaches, we have found
starting p-s pairs (Sec. 4) and trained the MLP to pick the
best starting p-s pair. Then, we have measured the time and
success rate. The comparison is shown in Tab. 8. We can
see that the effective time (the average time needed to obtain
one correct solution in the RANSAC scheme) of the solver
using Homotopy Continuation is about 2x lower than the
effective time of the solvers using the Newton method, and
the Gauss-Newton method. The solver using the Homotopy
Continuation and the MLP classifier has the highest success
rate. The possible explanation for this is that the Newton
method behaves “more randomly” than the Homotopy Con-
tinuation, and therefore, it is more difficult to train.



Succ. rate µs ± δs [%] / Time µt [µs]
5pt problem

Solving technique M2 [44] MINUS [20] OUR
C-HC, All Sols 98.9 ± 0.2/ 1.9 × 105 97.7 ± 0.2 / 1.5 × 104 97.7 ± 0.1 / 5.1 × 103
C-HC, R Sols 56.1 ± 3.3 / 1.2 × 105 55.3 ± 2.6 / 5.7 × 103 54.7 ± 3.2 / 1.9 × 103
C-HC, Fab Sol 12.9 ± 0.9 / 9.8 × 104 12.0 ± 1.5 / 6.4 × 102 13.1 ± 1.4 / 1.7 × 102
R-HC, R Sols 9.9 ± 1.7 / 5.7 × 104 9.7 ± 1.5 / 6.5 × 102 9.7 ± 1.5 / 1.1 × 102
R-HC, Fab Sol 3.4± 1.3 / 4.4 × 104 2.7 ± 0.8 / 6.8 × 101 2.7 ± 0.8 / 1.1 × 101
Newton, Fab Sol 4.0± 0.6 / 1.4 × 104 4.0 ± 0.7 / 8.5 × 100 4.0 ± 0.7 / 1.3 × 100

Succ. rate µs ± δs [%] / Time µt [µs]
Scranton

Solving technique MINUS [20] OUR
C-HC, All Sols 95.5 ± 2.6 / 6.1 × 105 95.7 ± 2.6 / 1.9 × 105
C-HC, R Sols 22.7 ± 1.6 / 4.7 × 104 22.5 ± 1.7 / 1.5 × 104
C-HC, Fab Sol 3.5 ± 0.7 / 1.3 × 103 3.3 ± 0.9 / 4.1 × 102
R-HC, R Sols 7.5 ± 1.2 / 2.5 × 103 7.6 ± 1.2 / 4.8 × 102
R-HC, Fab Sol 1.2 ± 0.3 / 7.0 × 101 1.2 ± 0.3 / 1.4 × 101
Newton, Fab Sol 1.9 ± 0.6 / 8.6 × 100 2.0 ± 0.4 / 1.4 × 100

Table 7. Homotopy continuation study. The rows represent variations mixing the solving technique of complex (C-HC) and real (R-HC)
homotopy continuation, the Newton’s local method (Newton) with starting from all solutions (All Sols), real solutions only (R Sols),
and the fabricated solution only (Fab Sol) of a problem. The columns represent different implementations of homotopy continuation.
M2 denotes the off-the-shelf implementation in Macaulay2 [44]. MINUS denotes the implementation based on [20]. OUR denotes our
efficient implementation. To compare MINUS and OUR, we selected 20 subsets Pi, i = 1, . . . ,20, each containing 50 random problems
from P 5pt for 5pt problem and from PScr for Scranton. All problems were normalized. For each Pi, we compute the success rate µsi of
502 − 50 of homotopy continuations from each start problem pij ∈ Pi to each different target problem pik ∈ Pi. We consider a homotopy
continuation successful if the fabricated solution of the target problem pik is among the solutions reached by the homotopy continuation
within 10−5 Euclidean distance in the solution space of depths. We report the mean success rate µs = mean(µsi) and the standard
deviation δs = std(µsi ) over all Pi’s for each implementation and mean computation times µt.

Method ρ[%] µt[µs] ϵt[µs]
N3 + B1 0.01 1.73 15159.7
N3 + MLP 0.12 8.2 6811.2
N15 + B1 2.1 2.6 119.7
N15 + MLP 10.6 10.6 100.0
HC + B1 4.2 18.7 442.1
HC + MLP 26.3 16.2 61.6
GN + B1 11.64 20.04 172.2
GN + MLP 20.29 26.1 128.5

Table 8. Study of methods for starting problem selection and track-
ing for Scranton problem. The strategies are evaluated on datasets
Deilvery area and Facade. Tracking methods: ‘N3’: Newton
method with 3 steps, ‘N15’: Newton method with 15 steps (this
number of steps maximizes the efficient time), ‘HC’: Homotopy
Continuation as described in Sec 6, ’GN’: Gauss-Newton method
optimizing the overconstrained 4pt problem. Problem selection
methods: ‘B1’: Tracks always from the same anchor. ‘MLP’: se-
lecting the starting problem as the one with the highest score given
by the MLP.

Tab. 9 provides a more detailed analysis of the frequency
of different results of real Homotopy Continuation tracked
from the fabricated solution. We consider two different set-
tings. In the “All pairs” setting, we track from each pi ∈ P
to each other pj ∈ P . Then, in the MLP setting, we se-
lect a starting p-s pair (p0, s0) from A90, and track from p0
to p. We measure how often we reach the fabricated solu-
tion, non-fabricated meaningful solution, a non-valid solu-
tion, and how often HC fails and does not deliver any so-
lution. The table shows that the MLP increases the proba-
bility of reaching the fabricated solution about 10x for 5pt
and 20x for Scranton. The probability of reaching another
meaningful solution increases about 3x for both problems,
while the probability of reaching a non-valid solution and
the probability of failing decreases.

18.2. Comparison of different settings our solver

Here, we show how different settings of the solver in-
fluence the resulting success rate ρ, mean running time µt,
and efficient time ϵt. We perform this study on our solver
for the Scranton problem. For every experiment, we use the



All pairs MLP
Result [%] 5 pt 4 pt 5pt 4pt
Fabricated sol. 3.64 1.49 38.8 29.2
1 rel. pose correct - 0.74 - 4.53
Other meaningful 9.50 13.43 31.6 34.2
Sol. with det -1 0.00 0.00 0.00 0.00
Sol. with zeros 0.03 1.53 0.01 0.52
Negative sol. 0.52 10.86 0.83 8.54
Failed track 86.31 71.94 28.8 23.0

Table 9. Percentage of different results of real homotopy contin-
uation. In “All pairs”, we track from each pi ∈ P to each other
pj ∈ P . In “MLP”, we solve each p ∈ V by selecting a starting p-s
pair (p0, s0) from A90, and by tracking HC from p0 to p. “Fabri-
cated sol.” means that the fabricated solution was reached, “1 rel.
pose correct” means that if we convert the obtained solution of the
Scranton problem to the relative poses, then at least one of three
relative poses is correct. “Other meaningful” means that a non-
fabricated solution with positive depths and valid rotation matrix
was reached, “Sol. with det -1” means that the matrix R is not
a valid rotation. “Sol. with zeros” means that some depths are
equal to 0, “Negative sol.” means that some depths are negative,
and “Failed track” means that the HC track has failed and, thus,
the solution has not been found.

settings from the main paper, except that one parameter is
varied. The solver uses anchors AScr

90 and it is evaluated on
data V Scr. Our goal is to show that we have selected the
optimal settings for our solver.

We compare different methods of dehomogenizing
Scranton problem in Tab. 10. This justifies our choice of
fixing the first depth λ1,1 = 1, which gives a superior suc-
cess rate compared to “symmetric” and “asymmetric” de-
homogenization proposed in [52].

See Fig. 9 for a code snippet showing the structure of
our MLP model. In Tab. 11, we show how the success rate
ρ and running time µt depends on the size of the MLP that is
used for the classification of the anchors. Larger networks
have a higher success rate. However, the efficient time of
the solver with the smaller MLP is better because the time
needed for the evaluation of the MLP grows faster than the
success rate.

Finally, in Tab. 12, we show how the number of HC
tracks per problem influences the success rate ρ, running
time µt, and efficient time ϵt. In this experiment, we use the
MLP trained in 5, and we perform n tracks from n anchors
with the highest score. We consider the solution success-
ful if at least one track reaches the fabricated solution of
the target problem. Much like using larger MLP as Tab. 11,
such a strategy involving multiple anchors suggests a fu-
ture approach to improving our solvers’ success rates. How-
ever, we note that the efficient time ϵt in Tab. 12 grows with
the number of tracks, since the evaluation time grows faster

Formulation Succ. rate
First depth fixed 2.30 %
Quan symmetrical [52] 1.47 %
Quan asymmetrical [52] 1.13 %

Table 10. Scranton dehomogenization study. Rows correspond
to different formulations of the problems. For each method, we
compute the success rate of 40002 − 4000 HC calls from each
starting p-s pair to each other target p-s pair. We consider the
result successful if the fabricated solution of the target problem
is and the result computed by HC are sufficiently close ( ≤ 10−5

Euclidean distance in the solution space of depths.)

Layer size ρ[%] µt[µs] ϵt[µs]
100 27.8 20.3 73.1
200 31.3 30.8 98.3
500 34.7 79.0 227.6

Table 11. Study of different MLP sizes. The strategies are eval-
uated on datasets Deilvery area and Facade. Scranton problem,
MLP+HC, A75. Rows correspond to different sizes of hidden
MLP layers.

# Tracks ρ[%] µt[µs] ϵt[µs]
1 29.2 19.6 67.0
2 37.2 33.3 89.6
3 42.2 45.0 106.8
4 45.9 60.8 132.6
8 56.4 118.1 209.5
16 67.9 245.3 361.5

Table 12. Number of tracks study. The strategies are evaluated on
datasets Deilvery area and Facade. Scranton problem, MLP+HC,
A90. Rows correspond to different numbers of tracks conducted
after the MLP is evaluated.

than the success rate.
References
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class Net(nn.Module):
def __init__(self, anchors):

super(Net, self).__init__()
self.fc1 = nn.Linear(20,100)
self.relu1 = nn.PReLU(100, 0.25)
self.fc2 = nn.Linear(100,100)
self.relu2 = nn.PReLU(100, 0.25)
self.fc4 = nn.Linear(100,100)
self.relu4 = nn.PReLU(100, 0.25)
self.fc5 = nn.Linear(100,100)
self.relu5 = nn.PReLU(100, 0.25)
self.fc6 = nn.Linear(100,100)
self.relu6 = nn.PReLU(100, 0.25)
self.fc7 = nn.Linear(100,100)
self.relu7 = nn.PReLU(100, 0.25)
self.drop3 = nn.Dropout(0.5)
self.fc3 = nn.Linear(100,anchors+1)

def forward(self, x):
x = self.relu1(self.fc1(x))
x = self.relu2(self.fc2(x))
x = self.relu4(self.fc4(x))
x = self.relu5(self.fc5(x))
x = self.relu6(self.fc6(x))
x = self.relu7(self.fc7(x))
x = self.drop3(x)
return self.fc3(x)

Figure 9. Code snippet describing our MLP.


	. A classical example of a minimal problem
	. Interesting hard minimal problems
	. Examples of problem-solution manifolds worked out in detail
	. Additional details for 5pt formulation
	. Additional details for Scranton formulation
	. Additional details on HC methods
	. Efficient evaluation of predictor/corrector

	. Variations of the normalization
	. Study to justify engineering choices
	. Comparison of different tracking approaches
	. Comparison of different settings our solver


