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1. Proofs

1.1. Proof of Theorem 1

The KL divergence KL(qϕ(τ̃)||padv(τ̃)) can be divided into two terms:

KL(qϕ(τ̃)||padv(τ̃)) =
∫
τ̃

qϕ(τ̃)log
qϕ(τ̃)

padv(τ̃)
dτ̃

=

∫
τ̃

qϕ(τ̃)logqϕ(τ̃) dτ̃ −
∫
τ̃

qϕ(τ̃)logpadv(τ̃) dτ̃ , (1)

where the first term is the negative entropy of qϕ, i.e., −Hϕ(τ̃). We introduce mutual information (MI) to help compute the
entropy:

Iϕ(τ̃ , z) =

∫
τ̃ ,z

p(τ̃ , z)log
p(τ̃ , z)

qϕ(τ̃)pz(z)
dτ̃ dz, (2)

where p(τ̃ , z) is the joint distribution of τ̃ = Gϕ(z) and z. Since p(τ̃ , z) = p(τ̃ |z)pz(z) and qϕ(τ̃) is the marginal distribution
qϕ(τ̃) =

∫
z
p(τ̃ , z) dz, we have

Iϕ(τ̃ , z) =

∫
τ̃ ,z

p(τ̃ , z)log
p(τ̃ , z)

pz(z)
dτ̃ dz −

∫
τ̃ ,z

p(τ̃ , z)logqϕ(τ̃) dτ̃ dz

=

∫
τ̃ ,z

p(τ̃ |z)pz(z)logp(τ̃ |z) dτ̃ dz −
∫
τ̃

logqϕ(τ̃) dτ̃

∫
z

p(τ̃ , z) dz

=

∫
z

pz(z)

∫
τ̃

p(τ̃ |z)logp(τ̃ |z) dτ̃ dz −
∫
τ̃

qϕ(τ̃)logqϕ(τ̃) dτ̃

=−Hϕ(τ̃ |z) + Hϕ(τ̃), (3)

∗Corresponding author.



where Hϕ(τ̃ |z) is called conditional entropy. Therefore, the first term of Eq. (1) can be replaced by −Iϕ(τ̃ , z) − Hϕ(τ̃ |z).
Since τ̃ ∼ qϕ is determined by z, i.e., p(τ̃ |z) = δ(τ̃ −Gϕ(z)), we have

Hϕ(τ̃ |z) = −
∫
z

pz(z)

∫
τ̃

p(τ̃ |z)logp(τ̃ |z) dτ̃ dz

= −
∫
z

pz(z)

∫
τ̃

δ(τ̃ −Gϕ(z))logδ(τ̃ −Gϕ(z)) dτ̃ dz

= −
∫
z

pz(z) dz

∫
τ̃ ′
δ(τ̃ ′)logδ(τ̃ ′) dτ̃ ′ (4)

= −
∫
τ̃ ′
δ(τ̃ ′)logδ(τ̃ ′) dτ̃ ′, (5)

which indicates that Hϕ(τ̃ |z) is a constant1. Therefore, we ignore this term in Eq. (3). Moreover, for the second term of
Eq. (1), since padv(τ̃) = e−U(τ̃)

ZU
, we have

−
∫
τ̃

qϕ(τ̃)logpadv(τ̃) dτ̃ =−
∫
τ̃

qϕ(τ̃)log
e−U(τ̃)

ZU
dτ̃

=

∫
τ̃

qϕ(τ̃)U(τ̃) dτ̃ +

∫
τ̃

qϕ(τ̃)logZU dτ̃

=Eτ̃∼qϕ(τ̃)[U(τ̃)] + logZU , (6)

where the partition function ZU =
∫
τ̃
e−U(τ̃)dτ̃ is a constant.

Therefore, minimizing Eq. (1) is equivalent to

min
ϕ
−Iϕ(τ̃ , z) + Eτ̃∼qϕ(τ̃)[U(τ̃)]. (7)

In other words, we need to simultaneously maximize Iϕ(τ̃ , z) and minimize Eτ̃∼qϕ(τ̃)[U(τ̃)]. According to Deep InfoMax
(DIM) [4], maximizing Iϕ(τ̃ , z) is equivalent to maximizing a Jensen-Shannon mutual information (MI) estimator,

IJSDϕ,ω (τ̃ , z) = E(τ̃ ,z)∼qτ̃,zϕ (τ̃ ,z)[−sp(−Tω(τ̃ , z))]− Eτ̃∼qϕ(τ̃),z′∼pz(z′)[sp(Tω(τ̃ , z
′))], (8)

where qτ̃ ,zϕ denotes the joint distribution of τ̃ and z, and sp(t) = log(1 + et) is the softplus function. Tω is a scalar function
modeled by a neural network whose parameter ω must be optimized together with the parameter ϕ. Therefore, we replace
Iϕ(τ̃ , z) by IJSDϕ,ω (τ̃ , z) and optimize ϕ and ω simultaneously.

Given the above, minimizing KL(qϕ(τ̃)||padv(τ̃)) is equivalent to

min
ϕ,ω
−IJSDϕ,ω (τ̃ , z) + Eτ̃∼qϕ(τ̃)[U(τ̃)]. (9)

1.2. Proof of Theorem 2

Since G1 is equivalent to G2, τ1 has the same dimension as τ2.We denote the dimension by K. Let τk1 be the k-th
element of τ1, and τk2 be the k-th element of τ2. Since Z1 is identical to Z2, i.e. the probability density function (PDF)
pZ1

(z) = pZ2
(z), we have

Pr(τk1 < hk, k = 1, 2, ...,K)

=

∫
G1(z)k<hk,k=1,2,...,K

pZ1
(z)dz

=

∫
G2(z)k<hk,k=1,2,...,K

pZ2
(z)dz

=Pr(τk2 < hk, k = 1, 2, ...,K), (10)

where {hk}k=1,2,...,K is a list of arbitrary real numbers. Therefore, the cumulative distribution function (CDF) of T1 is equal
to the CDF of T2, which proves that T1 is identical to T2.

1In fact, it is zero for discrete distribution and is infinity for continuous distribution.



1.3. Proof of Corollary 2.1

Assuming that the FCN has L layers, we define Conv(l), Kernel(l) and Act(l) as the convolutional function, the convolu-
tional kernel and the element-wise activation function at the lth layer, respectively. Let the spatial size of Kernel(l) be a(l)

and b(l). We denote the value before the activation function at the lth layer by o(l) and denote the feature map by v(l). We
further define v(0) as the input z and define v(L) as the output τ . Therefore, for l ∈ {1, 2, ..., L}, we have

o(l) = Conv(l)(v(l−1)) = v(l−1) ∗Kernel(l), (11)

v(l) = Act(l)(o(l)), (12)

where the operation ∗ stands for convolution. We denote v(l)i,j,w,h and o(l)i,j,w,h as a rectangular area with size w × h whose
center is at the location i, j in v(l) and o(l) respectively. Ignoring the boundary conditions, for all l, i, j, i′, j′, w, h, by the
nature of the convolutional operation, we have

o
(l)

i,j,w(l),h(l) = v
(l−1)
i,j,w(l−1),h(l−1) ∗Kernel(l), (13)

v
(l)

i,j,w(l),h(l) = Act(l)(o
(l)

i,j,w(l),h(l)), (14)

and

o
(l)

i′,j′,w(l),h(l) = v
(l−1)
i′,j′,w(l−1),h(l−1) ∗Kernel(l), (15)

v
(l)

i′,j′,w(l),h(l) = Act(l)(o
(l)

i′,j′,w(l),h(l)), (16)

where w(l−1) = w(l) + a(l) − 1, h(l−1) = h(l) + b(l) − 1, w(L) = w, and h(L) = h. Therefore, we can define a function
G

(l)
i,j,w,h as G(l)

i,j,w,h(v
(0)

i,j,w(0),h(0)) = v
(l)

i,j,w(l),h(l) .

When l = 0,G(l)
i,j,w,h is obviously equivalent toG(l)

i,j,w,h, since they are both identical functions. Moreover, the distribution

of v(l)
i,j,w(l),h(l) is also identical to v(l)

i′,j′,w(l),h(l) , since each element of v(0) is independent and identically distributed.

For l > 0, we assume that G(l−1)
i,j,w,h is equivalent to G

(l−1)
i,j,w,h, and the distribution of v(l−1)

i,j,w(l−1),h(l−1) is identical to

v
(l−1)
i′,j′,w(l−1),h(l−1) for all i, j, i′, j′, w, h. According to Eqs. (13) to (16), for all v(0)

i,j,w(0),h(0) = v
(0)

i′,j′,w(0),h(0) ,

G
(l)
i,j,w,h(v

(0)

i,j,w(0),h(0)) = Act(l)(v
(l−1)
i,j,w(l−1),h(l−1) ∗Kernel(l))

= Act(l)(G
(l−1)
i,j,w,h(v

(0)

i,j,w(0),h(0))) ∗Kernel(l))

= Act(l)(G
(l−1)
i′,j′,w,h(v

(0)

i′,j′,w(0),h(0))) ∗Kernel(l))

= Act(l)(v
(l−1)
i′,j′,w(l−1),h(l−1) ∗Kernel(l))

= G
(l)
i′,j′,w,h(v

(0)

i′,j′,w(0),h(0)).

Therefore, G(l)
i,j,w,h is equivalent to G(l)

i′,j′,w,h. Moreover, since the convolutions in Eqs. (13) and (15) are equivalent, the

distribution of o(l)
i,j,w(l),h(l) is identical to that of o(l)

i′,j′,w(l),h(l) according to Theorem 2. Furthermore, Since the active function

Act(l) is element-wise, i.e., it is equivalent for i, j and i′, j′, the distribution of v(l)
i,j,w(l),h(l) is also identical to that of

v
(l)

i′,j′,w(l),h(l) according to Theorem 2.

By using mathematical induction, we conclude that G(l)
i,j,w,h is equivalent to G(l)

i′,j′,w,h, and the distribution of v(l)
i,j,w(l),h(l)

is identical to that of v(l)
i′,j′,w(l),h(l) for all l ∈ [1, 2, ..., L]. Since v(L) = τ , w(l) = w, and h(l) = h, we derive Corollary 2.1.

Note that every convolutional layer of FCN needs to be zero-padded to avoid the boundary problem.

2. Adversarial Textures and Adversarial Clothes
Figs. S1 and S2 present additional adversarial textures and adversarial clothes, respectively, that are not presented in the

main paper (Figs. 6 and 8) due to the page limit. Unless otherwise specified, all results about physical attacks presented in
both the main paper and the Supplementary Materials were obtained by adversarial T-shirts.



(a) AdvTshirtTile (b) RCA2× (c) RCA6× (d) TCA

(e) EGA (f) YOLOv3 [8] (g) FasterRCNN [9] (h) MaskRCNN [3]

Figure S1. Visualization of different adversarial textures, extending Fig. 6 in the main paper. (a) The texture formed by tiling an adversarial
patches [10] repeatedly. (b-e) The textures produced by different methods to attack YOLOv2 [7]. (f-h) The textures produced by TC-EGA
to attack different detectors respectively.

(b) AdvPatch (c) AdvTshirt

(d)YOLOv2 skirt (e) YOLOv3 (f) FasterRCNN

(a) Random

(g) MaskRCNN

Figure S2. Real-world adversarial clothes produced by different methods, extending Fig. 8 in the main paper.

Target detector YOLOv3 FasterRCNN MaskRCNN

AP 0.511 0.419 0.492

Table S1. The APs of different detectors attacked by TC-EGA on Inria test set.

3. Results of attacking different detectors in the digital world

Tab. S1 presents the APs of YOLOv3, FasterRCNN and MaskRCNN on Inria test set. Note that the AP of each detector
on the original test images is 1.0. Though these AdvTextures were not effective as that of YOLOv2 whose AP was 0.362
(See Tab. 1 in the main paper), they had lowered the AP of clean images by half.

4. Comparison between Indoor and Outdoor Conditions

We compared the attack effectiveness of different adversarial T-shirts in the indoor and outdoor scenes. We used the videos
described in Sec.4.2 in the main paper. We extracted 32 frames from each video with viewing angles varying from 0◦ to 3◦.
Therefore we collected 3×32 = 96 frames for each scene and each detector. The results are presented in Tab. S2. The indoor
mASR was comparable to the outdoor mASR for each piece of adversarial clothing. It indicates that the adversarial clothes
are effective in different scenes.



scene
Target

YOLOv2 YOLOv3 FasterRCNN MaskRCNN

Indoor 0.771 0.764 0.912 0.832
Outdoor 0.714 0.638 0.948 0.878

Table S2. The mASRs of the attacks at different distances between persons and camera.

5. Effectiveness of the Attack with Respect to the Distance to the Camera
We recorded additional videos for each person wearing YOLOv2 T-shirt in both indoor and outdoor scenes. The persons

still turned a circle slowly in front of the camera to collect frames at different viewing angles. We varied the distance between
the camera and the persons to be 1.6 m, 2.0 m, 2.6 m, 3.4 m, 4.4 m, 5.6 m, and 7.0 m. For each distance, we collected
3(persons) × 2(scenes) × 32(frames per video) = 192 frames in total. Fig. S3 presents the mASRs of YOLOv2 T-shirt at
various distances. The mASR was the highest when the persons was close to the camera (1.6 m, mASR 0.791). It decreased
to 0.257 when the distance was 7.0 m.

1 m 3 m 5 m 7 m
distance

0

0.5

1.0

m
AS

R

Figure S3. The mASRs of the attacks at different distances between persons and camera.

6. Attacking YOLOv3
In this section we provide the reasons of scaling the size of the input by 50% before sending to YOLOv3 (see Tab. 4 in

the main paper). YOLOv3 has three branches to predict boxes in different scales. These branches are based on feature maps
of an backbone network in different layers, and use additional blocks before predicting boxes. Therefore, These branches
are relatively independent when being adversarially attacked. Since the number of the boxes predicted by different branches
can be quite different, the attack might be biased to one particular branch. Fig. S4a presents the histogram of the predicted
boxes of each branch on the Inria training dataset, with a confidence threshold 0.5. The first branch predicted large scale
boxes, and the third predicted small scale boxes. Fig. S4b presents the fraction of the predicted boxes with respect to different
confidence thresholds. From the figure, the second branch predicted most of the boxes (62.8% when the confidence threshold
is 0.5), indicating that the produced adversarial pattern may be biased towards attacking the second branch. However, in our
recorded videos, the scale of the persons were outside the range of the second branch’s predicted boxes (compare Figs. S4a
and S4c). Therefore, we scaled the size of the input by 50% before sending the frames to YOLOv3.

7. Transfer Study in the Physical World
We performed transfer-based attacks on several detectors by the adversarial clothes that are produced to attack particular

detectors. Tab. S3 presents the mASR of the transfer-based attacks. Every number in the table was obtained over 192 frames
as described in Section 4.2 in the main paper. The adversarial clothes of YOLOv2 and YOLOv3 remained effective when
they were used to attack YOLOv3 and YOLOv2, respectively. However, these clothes got low mASRs when attacking other
models except RetinaNet. The adversarial clothes of Faster RCNN and MaskRCNN remained effective when they were used
to attack other models, though sometimes (e.g., attacking YOLOv3) not as effective as attacking themselves. A possible
solution is to use the model ensemble technique [2, 6], which is left as future research.
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