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1. Technical Details

We supplement the detailed network structures and basic
technologies in this paper.

1.1. Positional Encoding

Instead of directly inputing location x and direction r to
MLPs, the original NeRF pre-process it by positional en-
coding [2] for better representing the high frequency details
in scenes. As shown in Equ. 1.

v(z) = (sin(2°7z), cos(207z), ...,

sin(2E71nx), cos(2F " 1mx)) (1)

We employ the same positional encoding and L for x while
omitting r because of introducing the Spherical Harmonics
model.

1.2. Spherical Harmonics

Original NeRF adopts an implicit function to predict the
colors in different directions. However, the Spherical Har-
monics model [] is a widely used model to model Lamber-
tian surfaces and glossy surfaces. Followed Nex [3] and
PlenOctree [4], Our EfficientNeRF also utilize the same
technology as an explicit function to predict the colors.

Specifically, the MLPs will output the sphefical harmon-
ics coefficient & € R3*(P+1* then convert to RGB color
by
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where S is the sigmod function to normalize the color to
range [0, 1].

1.3. Network Structure

The network structure of Coarse MLP and Fine MLP are
shown in Fig. la and Fig. 1b, respectively. First, the po-
sition x each sampled point are pre-processed by positional
encoding to y(x). Then, v(x) are sent to coarseMLP or fine
MLP to predict the 3D attributes, including color parame-
ters sh and density o. Finally, the color parameters sh will

be convert to RGB through Equ.2. The only difference be-
tween coarse MLP and fine MLP is the width and depth of
linear layers.

1.4. Implement NerfTree

Our NerfTree consists of Coarse Dense Voxels V. and
Fine Sparse Voxels V. In addition, there are an edge £ €
RD:x1 linking the valid points in V, to corresponding local
voxels in Vy. We implement NerfTree in CUDA, the speed
and performance comparison is illustrated in Tab. 1.

Inference Speed (FPS) | PSNR (1)
Coarse and Fine MLPs 0.18 31.71
NerfTree 238.46 31.68

Table 1. Comparison between different testing model.
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(a) Lightweight Coarse MLP.
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(b) Standard Fine MLP.

Figure 1. The network structure of our lightweight coarse MLP
and Fine MLP

2. Additional Results

In this section, we perform more experiments to demon-
strate the characteristic of our proposed EfficientNeRF.



2.1. Default Density : ¢

Before training, we initialize the default density in Mo-
mentum Density Voxels V. as €. These experiments will
explore the influence of the different values of €. As shown
in Tab. 2. We found that the larger value of ¢, the more ac-
curate the synthesized results because of the number of sam-
ples, while the slower training speed. Therefore we choose
1.0 as the default density value to consider both training
speed and accuracy.

€ Training Speed | PSNR (1)
0.1 0.018s / iter 31.54
1.0 0.021s / iter 31.68
10.0 0.057 s / iter 31.75

Table 2. The influence of different value of default density €. The
larger value of €, the more accurate synthesized results, while the
slower training speed.

2.2. Pivotal Threashold: ¢

Pivotal threashold e determines the minimal contribution
w; of pivotal samples, as shown in Equ. 3.

N
> wi=1 (3)
=1

We conduct these experiments to demonstrate the influence
of different pivotal thresholds: ¢, the results are listed in
Tab. 3. As the decrease of ¢, the training speed rises while
the accuracy gets saturated. Thus e = 1 x 10™% is a good
choice.

€ Training Speed | PSNR (1)
1x1077 0.018s / iter 31.27
1x107% | 0.021s/iter 31.68
1x107% | 0.029s/iter 31.71

Table 3. The influence of different value of pivotal threashold e.

2.3. Dynamic Number Samples

In the beginning, since all queried densities are greater
than zero, the number of coarse sampling is N.. As the
training goes on, more and more invalid samples appeared,
thus the number of valid and pivotal samples rapidly de-
creased. Finally, the number of samples at the coarse and
fine stage converges to a relatively fixed value. As illus-
trated in Fig. 2 and Fig. 3, the horizontal axis is training
iterations and the vertical axis is the number of sampling
during the coarse or fine stage.
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(b) The dynamic number of pivotal samples of Lego
scene.

Figure 2. The dynamic number of coarse and fine sampling in
Lego scene.

(b) The dynamic number of pivotal samples.

Figure 3. The dynamic number of coarse and fine sampling of Mic
scene.

3. Visualization

We present more visualization results (including pre-
dicted depth) of different sceene in Fig. 4, Fig. 5, Fig. 6,
and Fig. 6 to demonstrate the effectiveness of our Efficient-
NeRF.
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Figure 4. Qualitative results with state-of-the-art methods on the Realistic Synthetic dataset [2].
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Figure 5. Qualitative results with state-of-the-art methods on the Realistic Synthetic dataset [2].
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Figure 6. Qualitative results with state-of-the-art methods on the Real Forward-Facing dataset [1].
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Figure 7. Qualitative results with state-of-the-art methods on the Real Forward-Facing dataset [1].
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