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1. Details of Experimental Settings

In the supplementary material, we first add more details
about the setting in our experiments.

1.1. Data Collection Details in CARLA

We choose four different Towns for data collection from
CARLA v0.9.10, which are shown in Figure | and the num-
ber of frames in each town is about 11000 with 8 differ-
ent routes covering all the main roads. To split objects,
since CARLA itself does not separate Car, Van and Cyclist
from Vehicles, we spawn all types of Vehicles and man-
ually denote Van and Cyclist with the actor IDs of car-
lamotors.carlacola, harley-davidson.low_rider, diamond-
back.century, yamaha.yzf, bh.crossbike, kawasaki.ninja and
gazelle.omafiets while denoting the remaining as Cars. Note
the box truck for carlamotors.carlacola is with size over
5.2m x 2.4m x 2.6m, which is the only too large van and
categorized into Van and Cyclist, occupying about one tenth
of frames in the abnormal-size class.

When collecting point cloud, we choose the frequency
of simulation frame to be 20Hz for synchronization and run
CARLA on two NVIDIA GeForce RTX 3090 GPUs with
RAM 120G in a Ubuntu 18.04 docker container.

1.2. LiDAR Placement Details

The ego-vehicle has its coordinate frame at its geometric
center at [40, 20, 0,0, 0] with respect to the ROI frame of
reference. All LiDAR configurations are illustrated in Fig-
ure 3, and their detailed coordinates are given in Table 1.
These coordinates are with respect to the ego vehicle’s co-
ordinate frame and will be transformed to ROI framework,
as shown in Figure 2. Note that the coordinate frames in
CARLA are left-handed, and we make the extra transforma-
tion in ROI when calculating the POG and surrogate metric.
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Figure 1. The four diverse town maps we used to collect data and
conduct experiments in CARLA v0.9.10.
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Figure 2. Coordinate frames of ROI, the ego-vehicle, and the Li-
DAR. Figure not to scale.

1.3. Training Details of Detection Algorithms

We use representative algorithms from OpenPCDet [4]
to evaluate the performance under different LIDAR place-



(e) Line-roll
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Figure 3. Illustrations of different multi-LiDAR placements used in the experiments

(f) Pyramid
Placement X y z roll | pitch
00 | -06 | 22| 0.0 0.0
Line 00 | -04 | 22| 00 0.0
0.0 04 (221 00 0.0
0.0 06 (221 00 0.0
0.0 00 (24 ] 00 0.0
Center 0.0 00 [26 ] 00 0.0
0.0 00 |28 ] 00 0.0
0.0 00 [30] 00 0.0
04| 02 |22 0.0 0.0
Trapezoid 04 | -02 |22 0.0 0.0
0.2 05 | 22| 0.0 0.0
02 | 051|221 0.0 0.0
05| 05 |22 0.0 0.0
Square 05 |-051(22] 0.0 0.0
0.5 05 (221 00 0.0
05 | -05 |22 0.0 0.0
-00 | -06 | 22| -0.28 | 0.0
Line-roll 00 | -04 |22 0.0 0.0
0.0 04 | 22| 0.0 0.0
0.0 0.6 | 22| 0.28 0.0
-02 | -06 | 22| 00 0.0
Pyramid 0.4 0.0 | 24| 0.0 0.0
-02 | 00 [ 26| 00 0.0
02| 06 |22 ] 0.0 0.0
-02 | -06 | 22| -028 | 0.0
. 0.4 0.0 | 24| 0.0 0.0
Pyramid-roll "Il 55 | 00 | 26| 00 | 00
02 ] 06 | 22| 028 0.0
-02 | -06 | 22| 00 0.0
Sy 0.4 0.0 | 24| 0.0 | -0.09
Pyramid-pitch || > | 00 | 26| 00 | 00
02| 06 |22 0.0 0.0

Table 1. Coordinates of LiDAR sensors with respect to the ego-
vehicle coordinate frame. All values of x,y,z are in meters and roll
and pitch angles are in rad.

Hyperparameter Value
Epochs 10
Optimizer adam_onecycle
Learning Rate 0.01
Weight Decay: 0.01
Momentum: 0.9
Learning Rate Clip 0.0000001
Learning Rate Decay 0.1
Div Factor 10
Warmup Epoch 1
Learning Rate Warmup False
Gradient Norm Clip 10
MOMS [0.95, 0.85]
PCT_START 0.1

Table 2. Hypeparameters for optimization in model training

ments. We keep all the models’ hyperparameters the
same as the default KITTI configuration files and change
the optimization parameters to fine-tune the pre-trained
models using the collected data from different LiDAR
placements in CARLA. Details of the optimization hyper-
parameters are given in Table 2. Since only the front
half of the point cloud is used to fine-tune the detec-
tion models, we change POINT_CLOUD_RANGE to be
[0, —20, —3, 40,20, 1] as well. We ensure that the hyper-
parameters are the same for all experiments to fairly com-
pare the detection performance, and the detection perfor-
mance is tested at epoch 10 for all models.

2. More Experimental Results and Analysis

2.1. Recall under Different LiDAR Configurations

Apart from the average precision to show the detection
performance, we further consider using the overall recall
(rcnn) with IoU of 0.5 and 0.7 to show the detection per-
formance of all the objects and validate the relationship be-



Models Regall renn @O.SQ IoU ‘ Rec'all renn @0.79 IoU '
Center | Line | Pyramid | Trapezoid || Center | Line | Pyramid | Trapezoid
PV-RCNN [2] 0.5834 | 0.6009 | 0.6260 0.6103 0.4192 | 0.4330 | 0.4610 0.4404
Voxel RCNN [1] 0.5686 | 0.5858 | 0.6112 0.5929 0.3901 | 0.4093 | 0.4299 0.4172
PointRCNN [3] 0.4462 | 0.4584 | 0.4722 0.4593 0.3030 | 0.3346 | 0.3321 0.3392
PointRCNN-IoU [3] || 0.4437 | 0.4633 | 0.4706 0.4597 0.3020 | 0.3300 | 0.3325 0.3373
SECOND [5] 0.4590 | 0.4792 | 0.5035 0.4835 0.2827 | 0.2960 | 0.3104 0.3050
SECOND-IoU [5] 0.5788 | 0.5944 | 0.6249 0.6052 0.3726 | 0.3838 | 0.4107 0.3966

Table 3. Comparison of recall performance under various LiDAR configurations using different algorithms.
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Figure 4. The relationship overall recall performance and overall surrogate metric of different LIDAR placements for Car, Van and Cyclist.

tween our surrogate metric. The comparison of recall per-
formance under different LiDAR placements can be found
in Table 3. It can be seen that the recall metric varies a lot
under different LiDAR placements for the same detection
models. Specifically, Pyramid almost gets the best perfor-
mance for all the algorithms with IoU of both 0.5 and 0.7,
which is different from the performance of average preci-
sion in Table 1 of the main text of the paper.

From Figure 4, we can find the increasing trend between
recall and our surrogate metric as well. Note that since the
recall is calculated for all Cars, Vans and Cyclists, our total
information gain surrogate metric is the sum of S-MIG of
Car, Van and Cyclist. Furthermore, it can be seen that the
performance variance under different LiDAR placements
does not decrease as the IoU is going less, showing that the
influence of LiDAR placement is consistent with the recall
metrics, as the surrogate metric shows.

2.2. Sensitiveness Analysis of Detection Algorithms

In this section, we analyze how sensitive current differ-
ent LIDAR-based detraction algorithms are to the influence
of LiDAR placements. From Figure 8 in the main text of
the paper and Figure 4 in the supplementary material, it can
be found that point-based methods, like PointRCNN and
PointRCNN-IoU, are sensitive to different LiDAR place-
ments and have a relatively clear linear relationship with

3D AP PV-RCNN [2] | PointRCNN [3] S(_ll\gg?
Pyramid 57.44 44.28 -5.64
Pyramid-pitch 53.46 37.27 -5.71

BEV AP PV-RCNN [2] | PointRCNN [3] S(-ll\g};?
Pyramid 65.81 56.97 -5.64
Pyramid-pitch 62.33 51.39 -5.71

Table 4. Influence of pitch rotation of front LiDARs on Car AP
detection performance.

our surrogate metric. On the contrary, the detection per-
formance of voxel-based methods fluctuates with different
LiDAR configurations as well, but the linear relationship is
less obvious, which is because point-based methods rely on
the original point data collected from LiDAR and are highly
related to the point cloud distribution and uncertainty re-
vealed by our surrogate metric.

Besides, there are some detection algorithms where the
fluctuation caused by LiDAR placement is even more sig-
nificant than the difference between different algorithms
given any LiDAR placement. Specifically, the recall
with 0.7 IoU of Second is better than PointRCNN under
Pyramid-roll, while Second performs worse than PointR-
CNN using data collected under other LiDAR placements,
showing that LiDAR configuration is also a critical factor in
object detection. Therefore, there is still room to improve



Recall @0.5 IoU | PV-RCNN [2] | PointRCNN [3] S(ll\gg?
Pyramid 0.6260 0.4722 -7.90
Pyramid-pitch 0.6002 0.4490 -7.99

. S-MIG
Recall @0.7 IoU | PV-RCNN [2] | PointRCNN [3] (103)
Pyramid 0.4610 0.3321 -7.90
Pyramid-pitch 0.4279 0.3122 -7.99

Table 5. Influence of pitch rotation of front LiDARs on overall
recall detection performance.

the 3D detection performance from LiDAR placement.

2.3. Influence of Pitch Angles for Front LiDAR

Along with the analysis of roll angle of sided LiDARs
in the main text of the paper, we also show the influence of
pitch angle for front LiDAR, which is intuitively essential
for object detection in the front 180-degree field of view.
From Table 4 and Table 5, it can be seen that the surrogate
metric of Pyramid-pitch placement is less than that of Pyra-
mid placement. The Car average precision and overall re-
call metrics are less, which shows that our surrogate can be
used to evaluate the detection performance around the local
neighborhood of LiDAR placement. Note that the surrogate
metric is the sum of all the objects for recall comparison
because the recall includes all Car, Van and Cyclist.

2.4. LiDAR Placement for Pedestrain Detection

Besides cars, vans and cyclists, e conducted an extra
experiment considering the pedestrians mainly from the
sidewalk as shown in the table below. The results further
consolidate the significance of LiDAR placement to SOTA
point cloud-based detection algorithms with the metric of
AP at 0.5 IOU. It shows the Line option almost performs
the best due to its wide horizontal view field. Furthermore,
we found that the influence on Pedestrian detection is even
larger than Car and Cyclists as shown in Table 1 in the main
text of the paper, where the four SOTA models are affected
by 30% of Line placement.

2.5. Qualitative Visualization and Analysis

This section shows some qualitative visualization and
analysis of point cloud collected through different LIDAR
placements. From Figure 5, we can see that the distribution
of point cloud varies a lot in the same scenario, which is di-
rectly caused by different LIDAR placements. Specifically,
the point distribution of Center is more uniform in the ver-
tical direction. However, there are some aggregated points
as clear horizontal lines for other placements, which results
in the performance improvement for small object detection
like Cyclist or extremely large trucks, as shown in Figure 8
and Table 1 in the main text of the paper.

3D (AP@0.50) Center | Line | Pyramid | Trapezoid
PV-RCNN [2] 12.80 | 16.35 10.95 13.57
Voxel RCNN [1] 10.95 8.17 4.85 12.09
PointRCNN [3] 1098 | 11.75 10.20 11.32
PointRCNN-IoU [3] || 10.66 | 12.19 10.23 11.30
SECOND [5] 11.35 | 8.82 7.46 8.10
SECOND-IoU [5] 5.00 8.78 5.23 7.50

BEV (AP@0.50) Center | Line | Pyramid | Trapezoid
PV-RCNN [2] 15.30 | 19.96 17.27 17.23
Voxel RCNN [1] 11.45 | 9.32 7.37 13.48
PointRCNN [3] 11.86 | 14.44 11.67 12.21
PointRCNN-IoU [3] || 11.59 | 14.38 11.85 13.61
SECOND [5] 13.38 | 13.71 10.08 12.57
SECOND-IoU [5] 7.46 | 12.27 8.49 10.54

Table 6. Influence of LiDAR placement on pedestrian detection

However, since the aggregated lines can better repre-
sent the shape and other critical information of the objects,
other plane-placed LiDAR configurations have better per-
formance for large-scale object detection like Car, where
there are enough points for the detection task. In Figure 6,
we illustrate the influence of roll and pitch angle in Pyra-
mid placement. For the objects far away, the distribution of
object point cloud is quite different. The distribution under
LiDARs with roll angle is sparser horizontally, making key
points harder to aggregate. However, Pyramid-pitch place-
ment makes the points in the front object shifted below, re-
sulting in the object not being that clear to detect. Note that
there is some slight difference in objects for each scenario,
but it does not matter because the distribution of objects
is the same for all LIDAR placements. As the number of
frames is huge, the detection performance will be fair for
all the experiments.

3. Limitation and Discussion

In this section, we present some limitations of our work
and some further discussions. First, when calculating our
surrogate metric using POG, we have assumed that all the
voxels are independent. Although objects in ROI are inde-
pendent among all the frames, the voxels may be related to
their neighbors and not fully independent. However, since
the number of frames is large enough, the related voxels
are highly separated, so our assumptions somewhat hold.
Besides, we do not consider the case of occlusion. When
LiDAR beams meet some object, they will no longer get
through it in most cases and reflect. In our Bresenham
model, we ignore such occlusion based on observing that
the occlusion case is rare in the CARLA town with 40, 80,
or 120 vehicles. Also, occlusion often happens far away
from the ego vehicle, so it may not influence the surrogate
metric too much. Also, we leave the task of finding bet-
ter surrogate functions to evaluate or even optimize LiDAR
configurations as the future work in this community.

Although we have conducted extensive experiments and



(a) Center (b) Line
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Figure 5. Visualization of point cloud distribution from different LiDAR configurations.

(a) Pyramid

(b) Pyramid-roll (c) Pyramid-pitch

Figure 6. Comparison of point cloud distribution from LiDAR
placement with roll and pitch angles.

made comprehensive comparison and analyses, there are
still some weaknesses. First, we do not train each model
for 80 epochs as default to make the experiment efficient.
We have found that the fine-tuning loss of all the detec-
tion algorithms has already converged after 10 epochs, so
we stop it and test the performance for a fair evaluation.
Also, the point cloud data is sometimes sparse for objects
far away, which is challenging for detection and the detec-
tion metrics are not as high as those on KITTI. That is based
on the observation that the influence of LiDAR placement
is more evident for sparse point cloud to avoid saturation
and is also consistent with the practical applications where
multiple LiDARs are mainly used towards the challenging

cases to detect objects with sparse points. Moreover, the
evaluated multi-LiDAR placements are not as complicated
as the cases in the company. The real LiDAR placement is
confidential for the company, and we believe the simplified
case is enough to show the influence of LiDAR configura-
tion to meet the motivation of this work.
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