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1. Dataset Generation

1.1. Modified Double Moving MNIST

This dataset contains 8 motion patterns combined by 4
directions and 2 modes (no bounce or bounce once). In
order to improve the controllability of text and make the
dataset more complex, we randomly add one static digit as
background. To avoid the ambiguity of description, two
digits of the same number are not allowed to exist in one
image.

Following the Single/Double Moving MNIST, the com-
binations of digit and motion pattern in training and testing
set are mutually exclusive. That means, for example, digit
9 only moves horizontally in training set, but vertically in
testing test.

1.1.1 CATER-GEN-v1

CATER-GEN-v1 is a smaller and simpler version of
CATER-GENs to facilitate the observation of not only ac-
tions of generated video, but also the variation of surface
lighting, the shadow, and the background. There are three
illuminations out of scene including key light, fill light, and
back light. Once the object moves, the surface light and
shallow will also change, bringing a challenge for reason-
able and accurate video generation. This dataset only con-
tains two objects: cone and snitch (like three intertwined
tori) in metallic gold color. The initial position of objects on
the table plane is randomly selected from a 6 × 6 portion.
We inherit four actions in CATER: “rotate”, “pick-place”,
“slide”, and “contain”. Each video randomly contains one
or two actions that happen at the same time. The “rotate”
action is afforded by snitch. For “pick-place” and “slide”
actions, the target position is also randomly selected. We
define the descriptions according to shapes, actions, and co-
ordinates (“the cone is picked up and containing the snitch”,
“the snitch is sliding to (-1, 3)”). We also provide the ver-
sion of ambiguous descriptions by replacing the coordinate
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with quadrant for diverse video generation (“the snitch is
sliding to the second quadrant”).

1.1.2 CATER-GEN-v2

Based on the pipeline of CATER dataset, we inherit the ob-
jects and actions. Specifically, objects include five shapes
(cube, sphere, cylinder, cone, snitch), in three sizes (small,
medium, large), two materials (metal, rubber) and nine col-
ors (red, blue, green, yellow, gray, brown, purple, cyan, and
the gold only for snitch). The snitch is a special object with
fix size, material, and color. The “rotate” action is afforded
by cubes, cylinders and the snitch, while the “contain” ac-
tion is only afforded by the cones. In CATER-GEN-v2,
each video randomly contains one or two actions that both
start at the first frame. We fix the camera position to ensure
the consistency of coordinate system. To generate explicit
descriptions, we provide all properties, action, and coordi-
nate for each moving object like “the medium blue rubber
cone is picked up and placed to (1, -3)”. To generate am-
biguous descriptions, we randomly discard attributes (size,
material, color) for each object thus brings into the uncer-
tainty of referring expression. Like CATER-GEN-v1, we
also replace the coordinate with quadrant to produce the un-
certainty of movements (“the rubber cone is picked up and
placed to the fourth quadrant”).

2. Quantitative Results
Since video generation is a challenging and relatively

new task, there are few effective metrics to evaluate gener-
ated videos currently. To quantitatively evaluate MAGE, we
apply conventional pixel-based similarity metrics SSIM and
PSNR for deterministic video generation. We also report
several perceptual similarity metrics including image-level
Fréchet Inception Distance (FID) [3] and Learned Percep-
tual Image Patch Similarity (LPIPS) [2], as well as video-
level Fréchet-Video-Distance (FVD) [9]. To evaluate the
diversity of generated videos given ambiguous text, follow-
ing previous work [1], we measure the average mutual dis-
tance of generated video sequences in the feature space of



Mode Datasets FID ↓ LPIPS ↓ FVD ↓ DIV VGG ↑ DIV I3D ↑

Deterministic
(explicit text)

CATER-GEN-v1 62.66 0.20 31.70 0 0
CATER-GEN-v2 39.56 0.20 57.55 0 0

Diverse
(ambiguous text)

CATER-GEN-v1 62.89 0.22 45.49 0.15 0.45
CATER-GEN-v2 39.38 0.26 69.44 0.37 2.06

Table 1. Qualitative results on CATER-based datasets under deterministic and diverse video generation, respectively.

both VGG-16 [7] and I3D [8] network. The VGG and I3D
backbones used in similarity and diversity metrics are pre-
trained on ImageNet [5] and Kinetics [4], respectively.

Datasets SSIM ↑
PSNR ↑

VQ-
VAE

MAGE

Single Moving MNIST 0.97 43.12 33.89
Double Moving MNIST 0.87 38.80 24.66

Modified Moving MNIST 0.85 37.63 23.24

CATER-GEN-v1 0.97 47.01 35.03
CATER-GEN-v2 0.95 40.21 32.74

Table 2. Qualitative results under deterministic video generation.

Due to the novel setting of TI2V task, there exists a re-
strictive relation between high similarity and large diversity.
Generated videos are required to be more diverse and se-
mantically consistent with text at the same time. It is hard to
fairly compare with other methods for I2V or T2V task, as
methods for I2V task fail to generate controllable video with
complicated motion in text. And methods for T2V task tend
to generate correlated visual features that have been seen in
the training stage, making it difficult to generate video from
a novel image and model the uncertainty in text.

Tab.2 shows the PSNR and SSIM results on all datasets
under deterministic video generation that only involves ex-
plicit text descriptions. In the testing stage, the speed η
is randomly sampled from (0, 1) for each sample. As the
video generation performance is based on the reconstruc-
tion accuracy of VQ-VAE, both PSNR results of recon-
structed video form VQ-VAE only and generated videos
from MAGE are reported against ground truth videos. It
can be found that our generated videos achieve high simi-
larity with ground truth videos. When the dataset becomes
harder, the video generation performance is considerably af-
fected by VQ-VAE and declines.

To further evaluate the ability to handle ambiguous text,
we compare the perceptual similarity and diversity after ap-
plying implicit randomness module. When calculating di-
versity metric, we fix the speed input and generate 5 video
sequences for each sample. The results are shown in Tab.1.
Given explicit text, the generated video is unique and shows

high similarity with reference video. After replacing ex-
plicit text with ambiguous text, the ground-truth video is
no longer unique in this situation. The similarity between
generated video and reference video decreases within an ac-
ceptable range. At the same time, the model is able to gen-
erate diverse videos. The results of CATER-GEN-v2 show
much higher diversity than CATER-GEN-v1, which is also
consistent with different degrees of uncertainty in text.

In addition, to validate the effectiveness of the cross-
attention of MA and axial transformers, we conduct ab-
lation study to compare with concatenation operation and
vanilla transformer, respectively, in Tab. 3. First, the 1st
and the 2nd rows show that cross-attention in MA has better
performance than concatenation with 1.4 decrease on FID
while keeping similar LPIPS and FVD. Then, comparing
the 2nd and the 3rd rows shows that axial transformers in-
cur some performance loss but it remarkably reduces the
computational complexity of vanilla transformers by 46%,
which is consistent with our expectation.

Transformers MA FID LPIPS FVD GFL Throu
Vanilla Axial Concat Cross ↓ ↓ ↓ OPs↓ ghput↑
√ √ 63.4 0.20 30.4 85.1 12.3
√ √ 62.0 0.20 30.5 96.8 11.5

√ √ 62.7 0.20 31.7 52.7 37.2

Table 3. Ablation study under deterministic video generation on
CATER-GEN-v1.

3. Additional Visualizations

3.1. Attention Visualization in Motion Anchor

To show whether the motion anchor locates right objects
and their motion, we visualize the attention map in cross-
attention when generating motion anchor. Since the seman-
tics of motion and object information in text have interacted
and fused in the front text encoder, we select integral noun
phrase composed of 4 attributes to show the response in im-
age. As shown in Fig.2, with visual token embeddings as
query, we average the attention maps of different heads and
show the mean attention weights of specified noun phrase
(marked with same color in text). The visualizations show
that the cross-attention operation is aware of multiple ob-



jects in the scene and locates the specified objects.

Figure 1. Generated Samples from Modified Double Moving
MNIST and CATER-GEN-v1 for explicit condition evaluation.
The input row is the given image and description. The left col-
umn is the input speed.

3.2. Visualization of Explicit Condition

To visualize the effect of explicit condition speed, we
give the same image and description but input different
speeds. Examples are shown in Fig.1. Suppose each video
contains 20 frames and the predefined sampling interval in
training is (1, 2), then η = 0.50, for example, stands for
corresponding sampling interval with 1.5. By giving dif-
ferent η, it can be found that the model correctly generates
videos with corresponding speed. More generated videos
from CATER-GEN-v2 are shown in Fig.3.

3.3. Visualization of Composability

More compositional video generation results from Mod-
ified Double Moving MNIST and CATER-GEN-v1 are
shown in Fig.4. Given an image and a fixed speed, three
descriptions are input separately to specify different objects
and actions. Results show correct concordance with text
both on moving targets and actions.

3.4. Visualization of Implicit Randomness

We also show diverse generated videos in Fig.5 with am-
biguous text as input. The 5th frames and 10th frames from
two generated video with the same input are shown. It can
be found that, even given a difficult image and a compli-
cated caption, our method can model the implied random-
ness (including final position or action subject) and generate
diverse and relatively satisfactory results. However, when
the appearance of image is too complicated, there may be

deformation and clipping problems (like the last row). Be-
sides, since the VQ-VAE is trained on frame-level, there
are some objects in reconstructed videos have color change.
That will result in color inconsistency of generated videos
(like the third row on the right).

3.5. Failure Cases

We also show some failure examples in Fig.6. The first
example shows the effect of VQ-VAE. In our method, VQ-
VAE is responsible for image tokenizer before generation
(from 128× 128 to 16× 16) and reconstruction after gener-
ation. Therefore, the performance of VQ-VAE will directly
affect video generator. Because of the large down-sampling
ratio, VQ-VAE may lose fine-grained texture and result in
wrong shape of reconstructed object (the gray sphere in the
6th frame of reconstruction-only video), further leading to
distortion of generated video (the gray sphere in the 4th
frame of generated video).

On the other hand, since MEGA generates video tokens
at latent space with spatial size 16 × 16, the small resolu-
tion makes it hard to split two objects with overlap (like the
blue sphere and yellow cube in the second example). This
may also cause distortion when two objects intersect during
moving.

3.6. Visualization of Realistic Video Generation

Except for synthetic videos, we also wonder whether
our model can generate realistic videos. However, exist-
ing paired video-text datasets contain high uncertainty and
much noise and like scene change or the emergence of ir-
relevant objects. The texts are also not fine-grained enough,
making video generation hard to control. Therefore, we
evaluate our method on KTH [6] which is a relatively clean
action recognition dataset. The KTH dataset contains 2391
video clips of six human actions performed by 25 people in
four different scenarios. We use the original train-test split.
The text is formed like “A person is [action label].” The
reference video, reconstructed video of VQ-VAE only and
generated video of MAGE are shown in Fig.7. Compared to
reference videos, the reconstructed videos are blurrier and
lost details due to the limitation of VQ-VAE. Even though,
generated videos do not have much degradation in quality
compared to reconstructed videos. The speed of generated
videos is also consistent with input. However, for action
like “walking”, there may be no person in the first given
image, resulting in that the model tends to learn an “aver-
age person” (like a body with black color) in the training
stage. This may cause the body to gradually turn black dur-
ing generation. It also shows that generating unseen objects
is still a challenge.



Figure 2. Visualization of attention weights from cross attention during generating motion anchor. With a group of visual token embeddings
(16 × 16) from the corresponding position in image as query, each element in attention map stands for the mean weight of 4 word
embeddings of specified noun phrase marked with same color in text. The darker the color, the greater the response.

Figure 3. Generated Samples from CATER-GEN-v2 under deterministic video generation.



Figure 4. Generated Samples from Modified Double Moving MNIST and CATER-GEN-v1 for composability evaluation.

Figure 5. Generated Samples from CATER-GEN-v1 and CATER-GEN-v2 for diverse video generation.



Figure 6. Failure Cases from CATER-GEN-v2. Four rows from top to bottom are input text and speed, the reference video, the reconstructed
video from VQ-VAE only, and the generated video from MEGA, respectively. For each video, the 1st, 4th, 6th, and 8th frames are shown.

4. Limitations
Although our method can generate controllable and di-

verse videos, there are failure cases that reflect some limita-
tions of MAGE. Besides, TI2V task also faces demands in
evaluation metrics and datasets. We summarize those limi-
tations here.

• VQ-VAE based Architecture: Despite VQ-VAE
greatly reduces the data volume and facilitates the
training of video generator, the reconstruction perfor-
mance of VQ-VAE will directly affect prediction accu-
racy of subsequent video generator. Especially under
a large down-sampling ratio, VQ-VAE may lose fine-
grained texture, leading to distortion of object. Be-
sides, as VQ-VAE is trained on image-level, the tem-
poral consistency is not guaranteed, which may result
in inconsistency of predicted videos. Therefore, higher
performance VQ-VAE and proper down-sampling ra-
tio should be considered to help model generate more
consistent and high-resolution videos.

• Evaluation Metrics: Evaluating the quality of gener-
ated videos is challenging for TI2V task, especially for
ambiguous text descriptions. Since the “correct” video
may not be unique and accessible, existing similarity
metrics (e.g. PSNR, LPIPS, FVD) measuring the se-
mantic consistency between generated video with one
of “correct” videos are not accurate. Meanwhile, diver-
sity metrics (e.g. DIV VGG/I3D) can only reflect the
variation between generated videos no matter whether
they are consistent with text descriptions. Thus, appro-

priate metrics to evaluate both accuracy and diversity
are needed.

• Realistic Video Generation: The difficulties for re-
alistic video generation lie in not only the great un-
certainty in realistic videos, but also the lack of ap-
propriate datasets. Most of existing video-text paired
datasets are composed of coarse-grained text descrip-
tions, making it harder to generate coherent motion
given the first image. Generating realistic and open-
domain videos is still a major challenge of TI2V task.

References
[1] Michael Dorkenwald, Timo Milbich, Andreas Blattmann,

Robin Rombach, Konstantinos G. Derpanis, and Bjorn Om-
mer. Stochastic image-to-video synthesis using cinns. In
CVPR, pages 3742–3753, June 2021. 1

[2] Alexey Dosovitskiy and Thomas Brox. Generating images
with perceptual similarity metrics based on deep networks.
NeurIPS, 29:658–666, 2016. 1

[3] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
NeurIPS, 30, 2017. 1

[4] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 2

[5] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,



Figure 7. Generated Samples from KTH. Three rows from top to bottom of each example are the reference video, the reconstructed video
from VQ-VAE only, and the generated video from MEGA, respectively. The red box represents the first given image when generating
video.

Aditya Khosla, Michael Bernstein, et al. Imagenet large scale
visual recognition challenge. IJCV, 115(3):211–252, 2015. 2

[6] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recog-
nizing human actions: a local svm approach. In ICPR, vol-
ume 3, pages 32–36, 2004. 3

[7] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[8] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, pages 2818–2826,
2016. 2

[9] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphael Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric &
challenges. arXiv preprint arXiv:1812.01717, 2018. 1


