
Supplementary Materials: Online Convolutional Re-parameterization

1. Online Re-Parameterization
1.1. Block Squeezing: More Details

Pixel-wise definition of convolution. Let Ci, Co denote the input and output channel numbers of a KH × KW sized 2d
convolution kernel. X ∈ RCi×H×W and Y ∈ RCo×H′×W ′

denote the input and output tensors. The pixel-wise form of
convolution Y = W ∗X is:

Yco,h,w =

Ci−1∑
ci=0

KH−1∑
kh=0

KW−1∑
kw=0

Wci,co,kh,kw
Xci,h+∆kh,w+∆kw

, (1)

where ∆kh = kh −
⌊
KH−1

2

⌋
and ∆kw = kw −

⌊
KW−1

2

⌋
. Similarly, the pixel-wise form of convolution between two kernels

Wj,j+1 = Wj+1 ∗Wj is defined in Eq. (2).

Wj,j+1cq,cp,u,v
=

Cj−1∑
cj=0

KHj
−1∑

kh=0

KWj
−1∑

kw=0

Wj+1cq,cj ,kh,kw

· Pad(Wj ,KWj+1
− 1,KWj+1

− 1,KHj+1
− 1,KHj+1

− 1)cj ,cp,u−∆kh,v−∆kw

or

Wj,j+1cq,cp,u,v
=

Cj−1∑
cj=0

KHj+1
−1∑

kh=0

KWj+1
−1∑

kw=0

Wj cj,cp,kh,kw

· Pad(Wj+1,KWj
− 1,KWj

− 1,KHj
− 1,KHj

− 1)cq,cj ,u−∆kh,v−∆kw
,

(2)

where Wj ∈ RCj×Cj−1×KHj
×KWj and Wj+1 ∈ RCj+1×Cj×KHj+1

×KWj+1 are the weights of two sequential convolutional
layers, and Pad(·,L,R,T,B) means zero padding the weight tensor spatially from the left, right, top, and bottom by L, R,
T, and B pixels, respectively. The inter-weight convolution is very similar to regular convolution, except that the order of
element convolved is inverse (note the minus signs in the indices of Wj or Wj+1).

Efficiency analysis on parallel squeezing. Here we discuss two cases deployed in our re-parameterization blocks. For
the conv 1 × 1 - k × k sequences, the effectiveness of online squeezing has been discussed in Sec. 3.3 of the body. For
re-parameterizing k × k conv into stacked 3× 3 convs, it can be controversial whether the online squeezing strategy should
be applied since stacked 3 × 3 convs are believed to be more resource friendly. However, we find it not the case for linear
deep stem. This is because the intermediate feature maps are of high resolution, leading to large GPU utilization. Meanwhile,
there are only three input channels for the stem layer, yet much more channels for the intermediate feature maps.

Degraded convolutions. For the unification of the description of block squeezing, we regard all training-time linear layers
as standard or degraded convolutional layers. The specific definition of various linear layers is listed in Table 1. Note that the
weights of all listed layers can be homogeneously represented as weights of a corresponding convolutional kernel through
repetitive extension on certain dimensions.

1

Table 1. Training-time linear layers deployed in the OPERA block. Note that some of the conv 1 × 1 layers in the block are randomly
initialized, while other are identically initialized.

Layer Dimension of Weights Initialization Fixed Comments

Conv RCo×⌊Ci
G ⌋×KH×KW Wco,⌊ ci

g ⌋,kh,kw
∼ U(0,Θ 1√

⌊Ci
G ⌋×KH×KW

) %
std conv, group conv,

and dw conv (G = Ci)

Conviden.
1×1 RCo×⌊Ci

G ⌋×1×1 Wco,⌊ ci
g ⌋,1,1

1, if co
Co

= ci
Ci

0, else
% init as an identity layer

Scaling RC Wc = m,m ∈ [0, 1] " channel-wise scaling

Pooling RKH×KW Wkh,kw
= 1

KH×KW
" avg pooling

Filtering RC×KH×KW Wc,kh,kw =

 cos((c+1)×(kh+0.5)×π
KH

), c <
⌊
C
2

⌋
cos(

(c−⌊C
2 ⌋+1)×(kw+0.5)×π

KW
), c ≥

⌊
C
2

⌋ " freq prior filtering

1.2. Gradient Analysis on Multi-branch Topology: Detailed Derivations

To understand why the block linearization step is feasible, i.e. why the scaling layers are important, we conduct analysis
on the optimization of the unified weight re-parameterized. Our conclusion is that for the branches with norm layers removed,
the utilization of scaling layers could diversify their optimization directions, and prevent them from degrading into a single
one. Let us begin with a single-branch multi-layer topology, whose training dynamic has been theoretically discussed in [1].
To simplify the notation, we take only single dimension of the output Y. And the convolutional layer is represented as a
linear system:

Φ := {y = Wx|W ∈ RO×I}, (3)

where I = Ci ×KH ×KW , x ∈ RI is vectorized pixels inside a sliding window, y ∈ RO, O = 1, and W is a convolutional
kernel corresponding to certain output channel. Suppose W optimizated by stochastic gradient descent with a learning rate
η:

W(t+1) := W(t) − ηx⊤ ∂L

∂y
, (4)

where L is the loss function of the entire model. Consider stacked multiplicative (i.e. multi-layer) re-parameterization:

ΦN := {y = WNWN−1 · · ·W1x|Wj ∈ Rnj×nj−1}. (5)

Lemma 1 [1] Since each component Wj is updated by stochastic gradient descent respectively, the end-to-end mapping
matrix We := WNWN−1 · · ·W1 is optimized differently from that of Eqn. (4):

W(t+1)
e : = W

(t+1)
N W

(t+1)
N−1 · · ·W(t+1)

1

=W(t)
e − η

∥∥∥W(t)
e

∥∥∥2− 2
N

2
· (x⊤ ∂L

∂y
+ (N − 1) · Pr

W
(t)
e
{x⊤ ∂L

∂y
}) +O(η2),

(6)

where

PrW{G} :=

{ W
∥W∥2

G⊤ · W
∥W∥2

,W ̸= 0

0 ,W = 0
(7)

is the projection of G the direction of W, and

W
(t+1)
i := W

(t)
i − η

∂L

∂W
(t)
i

= W
(t)
i − η(

i+1∏
j=N

W
(t)
j)(

1∏
m=i−1

W(t)
m x)⊤

∂L

∂y
,∀i ∈ {1, 2, · · · ,M}. (8)

2

From Lemma 1 we can directly know that the update item of We is changed both in norm and direction, due to the
multi-layer (at least 2-layer) topology. To further understand the optimization of multi-branch re-parameterization, consider
a convolution-scaling sequence:

ΦConv−Scale := {y = γWx|W ∈ Ro,i, γ ∈ Ro}, (9)

where W and γ are weights of the convolutional layer and the scaling layer respectively. The mapping Wcs := γW is
updated by:

W(t+1)
cs := γ(t+1)W(t+1)

= (γ(t) − ηW(t)x⊤ ∂L

∂y
)(W(t) − ηγ(t)x⊤ ∂L

∂y
)

= W(t)
cs − η(vec(diag(W(t))2) +

∥∥∥γ(t)
∥∥∥2
2
)x⊤ ∂L

∂y
+O(η2)

(10)

Note that Eqn. (10) is a special case of Lemma 1, corresponding to the fact that the conv-scale sequence is actually a
two-layer topology. For a multi-branch topology with a shared γ, i.e.:

ΦConv−Norm
M := {y = γ

M∑
j=1

Wjx|Wj ∈ Ro,i, γ ∈ Ro}, (11)

the end-to-end weight We1,cs := γ
∑M

j=1 Wj is optimized equally from that of Eqn. (10):

W(t+1)
e1,cs : = W(t)

e1,cs − η(vec(diag(

M∑
j=1

W
(t)
j)2) +

∥∥∥γ(t)
∥∥∥2
2
)x⊤ ∂L

∂y

= W(t)
e1,cs − η(vec(diag(W(t))2) +

∥∥∥γ(t)
∥∥∥2
2
)x⊤ ∂L

∂y
+O(η2),

(12)

with the same forwarding tth-moment end-to-end matrix W
(t)
cs = W

(t)
e,cs, which equivalently means

∑M
j=1 W

(t)
j = W(t).

Hence, ΦConv−Scale
M introduces no optimization change. This conclusion is also supported experimentally [10]. On the

contrary, a multi-branch topology with branch-wise γ provide such changes, e.g.:

ΦConv−Scale
M,2 := {y =

M∑
j=1

γjWjx|Wj ∈ Ro,i, γj ∈ Ro}. (13)

The end-to-end weight We2,cs :=
∑M

j=1 γjWj is updated by:

W(t+1)
e2,cs := W(t)

e2,cs−η

M∑
j=1

(vec(diag(W
(t)
j)2) +

∥∥∥γ(t)
j

∥∥∥2
2
)x⊤ ∂L

∂y
+O(η2). (14)

With the same precondition W
(t)
cs = W

(t)
e2,cs, Eqn. (14) will never be equivalent to Eqn. (10) when Condition 1 is satisfied:

Condition 1 At least two of all the branches are active.

∃ S ⊆ {1, 2, · · · ,M}, |S| ≥ 2, such that ∀j ∈ S, vec(diag(W
(t)
j)2) +

∥∥∥γ(t)
j

∥∥∥2
2
̸= 0. (15)

To imply the conclusion above, first we notice the square form of precondition that:

γW =

M∑
j=1

γjWj =⇒ γ2vec(diag(W)2) = (

M∑
j=1

γjvec(diag(Wj)))
2. (16)

3

Meanwhile, if Eqn. (14) and (10) were equivalent, we have:

γ2vec(diag(W)2) =

M∑
j=1

γ2
j vec(diag(Wj)

2). (17)

By subtracting Eqn. (16) and (17), we come to the following result:

M∑
i=1

M∑
j=1,j ̸=i

γiγjvec(diag(Wi)diag(Wj)) = 0. (18)

This indicates either (1) there is strictly no correlation across all branches, which is not practical. (2) or at most one branch is
active, which contradicts Condition 1.

Condition 2 The initial state of each active branch is different from that of each other.

∀j1, j2 ∈ S, j1 ̸= j2, W
(0)
j1

̸= W
(0)
j2

. (19)

Meanwhile, when Condition 2 is met, the multi-branch structure will not degrade into single one for both forwarding:

γj1Wj1 ̸= γj2Wj2 ⇐⇒ γj1Wj1x ̸= γj2Wj2x (20)

and backwarding:

vec(diag(Wj1)
2) + ∥γj1∥

2
2 ̸= vec(diag(Wj2)

2) + ∥γj2∥
2
2 ⇐⇒ ∂L

∂(γj1Wj1)
̸= ∂L

∂(γj2Wj2)
, (21)

which reveals the following proposition explaining why the scaling factors are important. Note that both Condition 1 and 2
are always met when weights W(0)

j of each branch is random initialized [14] and scaling factors γ(0)
j are initialized to 1.

Proposition 1 A single-branch linear mapping, when re-parameterizing parts or all of it by over-two-layer multi-branch
topologies, the entire end-to-end weight matrix will be differently optimized. If one layer of the mapping is re-parameterized
to up-to-one-layer multi-branch topologies, the optimization will remain unchanged.

So far, we have extended the discussion on how re-parameterization impacts optimization, from multi-layer only [1] to
multi-branch included as well. Actually, all current effective re-parameterization topology [9, 10, 11, 13, 4] can be validated
by either Lemma 1 or Proposition 1.

Conv

Input

Output

Conv

Scaling

Input

Output

Conv Conv

Scaling Scaling

Conv

Scaling

Input

Output

Conv Conv

(a) Prototype Block (b) Same Optimized Re-param Block

Scaling

(c) Differently Optimized Re-param Block

Figure 1. An example for illustrating Proposition 1.

4

The impacts of momentum and weight decay. Momentum and weight decay are often deployed in company with SGD.
updating of a local multi-branch multi-layer topology Φ with M branches and Nm in each branch m.

Φ := {y =

M∑
m=1

Nm∏
n=1

Wmnx ≜
M∑

m=1

Wmx|Wmn ∈ Rdmn×dm(n−1)}. (22)

Each weight instance Wmn is optimized by SGD with a learning rate η, a weight decay λ, and a momentum coefficient
µ:

W(t+1)
mn := (1− ηλ)W(t)

mn − η

t∑
τ=1

(ηµ)t−τ ∂L

∂W
(τ)
mn

, (23)

leading to an update of the end-to-end mapping We of:

W(t+1)
e =

M∑
m=1

(1− ηλNm)W(t)
m − η

t∑
τ=1

(ηµ)t−τ
M∑

m=1

∥∥∥W(t)
m

∥∥∥2− 2
Nm

2
· ((x⊤ ∂L

∂y
)
(t)

+ (Nm − 1) · Pr
W

(t)
m
{x⊤ ∂L

∂y
}
(t)

) +O(η2),

(24)

where PrW{G} is the projection of G the direction of W defined in Eqn. (7). As the condition in Proposition 1 goes,
if one layer is re-paramed to multi-branches with a maximum depth of one, the weight decay item will remain unchanged
if Nm = 1 for all m. However, a minor difference may exist, considering that the introduction of zero-depth (constant)
items means different Wm

(t) with a same We
(t), which further changes the decayed part of the t moment weight. This

indicates optimization differences may occur in identically initialized layers with a vanilla or a re-parameterized implemen-
tation. Meanwhile, the momentum items can be regarded as previous gradients, thus having no impact on the correctness of
Proposition 1.

2. Experimental Results
2.1. Implementation Details

Initialization of branch-wise scaling layers. During the linearization step in Sec. 3.2 of the body, the original branch-wise
norm layers replaced with scaling layers. Therefore, the branch-wise numerical stability provided by norm layers is no longer
maintained. To balance the distribution of output feature maps of each branch, we have to carefully initialize the weights of
scaling layers. Specifically, the scaling factors are initialized to {1.0, 0.25, 0.5, 0.5, 0.0, 0.5} for the {1×1, k×k, 1×1-k×k,
1×1-pooling, 1×1-filtering, dw-pw conv} branches respectively. There are several intuitive reasons for such an initialization
strategy: (1) The scaling factors after 1×1 conv is set the highest among scaling layers of all branches. This is because the
variance of feature maps convoluted by 1×1 sized kernels is generally much smaller then those convoluted by k×k sized
kernels. (2) We set larger scaling factors for the 1×1-k×k branch than the k×k branch (0.5>0.25), since both branches
are similar spatial-channel correlational layers, and that the 1×1-k×k branch contains more parameters. (3) We decrease
the scaling factors of the 1×1-pooling and 1×1-filtering branches, as weights of these branches are easily to be trapped in
shallow local optima during early stages of training. This will in turn suppress the representative of other branches, which are
harder to converge. Here we only make a very limited number of attempts to initializing with different values. Meanwhile,
neither brute force searching methods nor differential ones [26] are deployed.

Data pre-processing. Our experimental results for ResNets and DBB-ResNets on ImageNet is different from that of the
literature of DBB [10]. This is mainly owned to a different data pre-processing pipeline. Actually, we process the input
batches exactly the same as Ding et al. in RepVGG [11]. Compared to the DBB pre-processing setting, the performance
improvement brought by re-parameteriaztion methods becomes marginal. However, all models achieve higher accuracy and
that’s why we change the setting.

5

2.2. More Results

Re-param on resnet variants. Depth and width are two different dimensions of model capacity [23, 20]. As larger ResNet
models only extends in the depth, we further conduct experiments on wider ResNets [25]. From Table 2 we show that OREPA
generalize well on wider neural networks. Besides, ResNeXts[24] share very similar architectures with bottleneck-ResNets,
thus benefiting from OREPA in the same way as ResNets do, as presented in Table 2.

Table 2. Experiments on ImageNet for 120 epochs for ResNet variants. All models reported are trained with batch size 256 on our machine
with 4 Nvidia Tesla V100 (32G) GPUs for a fairer comparison.

Re-param
ResNeXt-50 WideResNet-18 (1.5×) WideResNet-18 (2×)

Top1- GPU- Training Top1- GPU- Training Top1- GPU- Training
Acc Mem time/batch Acc Mem time/batch Acc Mem time/batch

None 77.14 12.4G 0.286s 73.69 6.0G 0.121s 74.74 7.4G 0.161s
OREPA 77.66 13.0G 0.343s 74.51 7.4G 0.164s 75.61 10.4G 0.229s

More visualization results. In Figure 2, we visualize branch-wise similarity of all the branches in more models and blocks.
It is clear that all branches are diversely optimized. We further presented the norm of branch-wise kernels for each output
channel in Figure 3. The branches do not contribute to the squeezed kernel equally. However, each of them is important for
some specific channels.

(a) OREPA-ResNet-18 (b) OREPA-ResNet-50
Figure 2. Visualization of branch-level similarity. We calculate cosine similarities between the weights from different branches. The mid
and right plots respectively correspond to 3× 3 and 1× 1 convolutional layers in ResNet-50.

2.3. Object Detection and Semantic Segmentation: Detailed Setup

In this part, we describe the detailed experimental setup for object detection and semantic segmentation. For these two
tasks, we apply the commonly used models [22, 17, 27, 6] and only replace the backbone with the re-param ones pretrained
on ImageNet.

Object Detection We conduct experiments on the popular MS-COCO [18] dataset to test the performances on object
detection. Following the common practice, we use the COCO trainval35k split (115K images) for training and minival (5K
images) for validation. We use both the two-stage model, Faster R-CNN [22], and the one-stage model, RetinaNet [17] with
ResNet-50 (DBB-50, OREPA-ResNet-50) as the backbones. By default, we apply an SGD optimizer with 0.02 as the initial
learning rate. The batch size is set to 4. We apply the 1× schedule, where the total training epoch is 12 and the learning
rate is reduced by 10 after the 8th and 11th epochs. The shorter sides of images is set to 800 and the longer ones are less
than 1333. For our OREPA-ResNet, we do not freeze the first stage (linear deep stem). Instead, we reduce the corresponding
learning rate by 10. All of our experiments are conducted using mmdetection [5].

6

Semantic Segmentation For semantic segmentation, we choose PSPNet [27] and DeepLabV3+ [6] with ResNet-50 (DBB-
50, OREPA-ResNet-50) as the backbones. We evaluate the models on Cityscapes [8]. It contains 5000 high-resolution finely
annotated images, which are divided into 2975, 500, and 1525 for training, validation and testing. There are 19 classes in
total for training and evaluation. We use the SGD optimizer with initial learning rate 0.02 to train for 40k iterations. The
poly learning rate with power 0.9 and minimum learning rate 2e-4 is applied. The default batch size is set to 2 and the weight
decay is 5e-4. Training data augmentation includes random scaling between 0.5× to 2.0×, random horizontal flipping,
random cropping to [512, 1024]. By default, we DO NOT apply the Sync-BatchNorm for all the backbones. In the inference
phase, we report the accuracy (mIoU) on the validation set without any test-time augmentation. All of our experiments are
conducted using mmsegmentation [7].

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 32 64 96 128 160 192 224

3×3 1×1_avg 1×1 1×1_3×3 1×1_pfir dw_conv

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 32 64 96 128 160 192 224

3×3 1×1_avg 1×1 1×1_3×3 1×1_pfir dw_conv

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 16 32 48 64 80 96 112

1×1 1×1_1×1

(a) 11th layer of OREPA-ResNet-18 (b) 16th and 14th layer of OREPA-ResNet-50

channel
index

channel
index

channel
index

L1 Norm of Different Branches

Figure 3. Sorted normalized norms of different branches. We notice that the average contribution of the branches varies. However, each
branch matters for some specific channels.

2.4. Limitations: Discussion on Residual awareness.

The residual connection [15] is believed important for training very deep neural networks for alleviate the gradient vanish-
ing problem [2]. Recently, RepVGG [11] is proposed as a high performance residual-free architecture. Inside each building
block of RepVGG, a training-time identity branch is maintained for provide residual connections. During inference, such
an identity branch can be squeezed into a convolutional layer for faster inference. Can such identity branches be online
re-parameterized into one layer at the training stage? We find it hard to give an affirmative answer. On the one hand, the
post-identity-addition norm layer has been proved an inferior design experimentally [16]. On the other hand, we conjecture
that the training-time branch-wise non-linearity brought by norm layers is more important in residual-free (VGG-like)
architectures then residual-based ones. Based on this point, we reserve all three branches in RepVGG blocks instead of
squeezing them into one.

To understand the inconsistent significance of norm layers for architectures with different residual-awareness, let us come
to Fig 4 [19] first. It is obvious that RepVGG models have difficulty in going deeper, unlike ResNets. This indicates that
the quasi-residual connections provided by identity branches in RepVGG is not the same as regular residual ones. More
specifically, the identity branches in RepVGG do not connect feature maps across activations, while those in ResNet do.
Based on these observations, we assume that, in residual-based architectures the training-time branch-wise non-linearity in
re-parameterization blocks are less important, as such properties have been provided by residual connections. However, it is
not the case in residual-free architectures.

There are three branches of identity, 1 × 1 conv, and 3 × 3 conv in the RepVGG blocks, as presented in Table 3 below.
We do not online merge the three branches for mainly two reasons: (1) There is little space for resource optimization in
RepVGG blocks (None vs. RepVGG), since identity and 1 × 1 conv are light weighted. (2) As has been stated in the Supp.
Sec. 2.4, the branches in RepVGG blocks are critical for providing approximate residual connections (RepVGG-Online vs.
RepVGG). This could be related to intrinsic discrepancies of residual-based/free architectures, which is still a important topic
for the community.

Actually, results reported in Table 4 include additional branches online merged into the 3×3 conv. Compared to an offline
counterpart (OREPAVGG-Offline), online re-param saves extra GPU memory by 97% and accelerates training for 4×, as
shown in Tab. 3 While RepVGG boosts residual awareness in VGGs, can we explore beyond with more complex structures?
Our work shed light on building complicated topologies with as little addition costs as possible for re-param community,
despite OREPAVGG might not be the optimal structure.

7

20 40 60 80 100 120
Depth

86

88

90

92

94

96
CI
FA
R1

0
Ac

cu
ra
cy

RepVGG
ResNet

20 40 60 80 100 120
Depth

40

45

50

55

60

65

70

75

80

CI
FA
R1

00
 A
cc
ur
ac
y

RepVGG
ResNet

Figure 4. Figure directly copied from [19]. When going deeper, RepVGG models suffer performance degradation while ResNets do not.

Scaling

Conv 3 x 3

Conv 1×1

Scaling

Pooling 3 x 3

Conv 1×1

Scaling

Conv 1×1

Freq 3 x 3 PW Conv 1x1

DW Conv 3×3

Scaling

Input

Output

Squeezing
BN BN

Conv 1×1

BN

Input

Output

Conv 1×1

BN

OREPA
Conv 3×3

BNBN

Conv 3 x 3

Scaling

Figure 5. The design of the proposed OREPA-VGG block during training.

Even though, we still don’t need to worry about the generalization of the proposed OREPA, considering that most archi-
tectures are residual-aware [24, 23, 3, 12, 21]. Even for residual-free architectures like RepVGG, OREPA provides solutions
for trading-off between model augmentation and extra training costs. More importantly, online re-parameterization make
it possible to build very deep and wide training-time blocks. We leave the systematical exploration towards more effective
re-parameterization for future works and other researchers.

Table 3. Results on all re-param variants for the model RepVGG-A0. In the “Structure” column,
√

indicate explicit layers with a norm
layer following, while ∈ 3× 3 represent implicit ones re-paramed into the 3× 3 layer.

Model Re-param Structure Top1- GPU- Training
3×3 identity 1×1 1×1-3×3 1×1-avg 1×1-freq fir dw3×3-1×1(8×) Acc Mem time/batch

RepVGG-A0

None
√

71.17 3.4G 0.083s
RepVGG-Online

√
∗ ∗ 71.90 3.4G 0.086s

RepVGG
√ √ √

72.41 3.8G 0.100s
OREPAVGG (reported)

√ √ √
∗ ∗ ∗ ∗ 73.04 4.2G 0.136s

OREPAVGG-Offline
√ √ √ √ √ √ √

72.96 16.1G 0.538s

References
[1] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: implicit acceleration by overparameterization.

In ICML, 2018. 2, 4
[2] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. The shattered gradients problem:

If resnets are the answer, then what is the question? In ICML, 2017. 7
[3] Andrew Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High performance large-scale image recognition without nor-

malization. arXiv 2102.06171, 2021. 8
[4] Jinming Cao, Yangyan Li, Mingchao Sun, Ying Chen, Dani Lischinski, Daniel Cohen-Or, Baoquan Chen, and Changhe Tu. Do-conv:

Depthwise over-parameterized convolutional layer. arXiv 2006.12030, 2020. 4
[5] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu,

Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong

8

Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. Mmdetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019. 6

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous seperable
convolution for semantic image segmentation. In ECCV, 2018. 6, 7

[7] Mmsegmentation contributors. Mmsegmentation: Openmmlab semantic segmentation toolbox and benchmark. https://
github.com/open-mmlab/mmsegmentation, 2020. 7

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,
and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016. 7

[9] Xiaohan Ding, Yunchen Guo, Guiguo Ding, and Jungong Han. Acnet: Strengthening the kernel skeletons for powerful cnn via
asymmetric convolutional blocks. In ICCV, 2019. 4

[10] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Diverse branch block, building a convolution as an inception-like
unit. In CVPR, 2021. 3, 4, 5

[11] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style convnets
great again. In CVPR, 2021. 4, 5, 7

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: transformers
for image recognition at scale. In ICLR, 2021. 8

[13] Shuxuan Guo, Jose M. Alvarze, and Mathieu Salzmann. Expandnets: linear over re-parameterization to train compact convolutional
networks. In NeurIPS, 2020. 4

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, 2015. 4

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual leaning for image recognition. In CVPR, 2016. 7
[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep neural networks. In ECCV, 2016. 7
[17] Tsung-Yi Lin, Priya Goyal, Ross Girshicl, Kaiming He, and Piotr Dollar. Focal loss for dense object detection. In ICCV, 2017. 6
[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan,

C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects in context. In ECCV, 2014. 6
[19] Fanxu Meng, Hao Cheng, Jiaxin Zhuang, Ke Li, and Xing Sun. Rmnet: equivalently removing residual connection from networks.

arXiv 2111.00687, 2021. 7, 8
[20] Thao Nguyen, Maithra, and Simon Kornblith. Do wide and deep networks learn the same things? uncovering how neural networks

representations vary with width and depth. In ICLR, 2021. 6
[21] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. Designing network designing spaces. In

CVPR, 2020. 8
[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal

networks. In NIPS, 2015. 6
[23] Mingxing Tan and Quoc V. Le. Efficientnet: rethinking model scaling for convolutional neural networks. In ICML, 2019. 6, 8
[24] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residue transformations for deep neural net-

works. In CVPR, 2017. 6, 8
[25] Sergey Zagoruyko and Nikos Komodakis. Wide residue networks. In BMVC, 2017. 6
[26] Mingyang Zhang, Xinyi Yu, Jingtao Rong, and Linlin Ou. Repnas: Searching for efficient re-parameterizing blocks. arXiv

2109.03508, 2021. 5
[27] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In CVPR, 2017. 6, 7

9

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

