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1. Additional Functions of The Simulator

Here, we introduce the additional functions provided by
the spiking camera simulator (SPCS).

1.1. Random Trajectories

For each object, we can add a random motion by the
function “Random trajectories”. Specifically, we generate
some random points first. Then, we use these points to fit a
spline curve. Finally, discrete point set in the spline curve is
as generated trajectory where the distance between discrete
points can be controlled by related parameters. Besides, we
also provide the user-defined trajectory, i.e., users can define
a expected trajectory in TXT and input the TXT to SPCS.

1.2. Random Scenes

SPCS supports generating a random scene by using the
funciton “Random scenes”. Specifically, the function would
randomly select objects and background as the scenes.
Then, all objects and camera would be added random tra-
jectories. Note that users need to download relevant materi-
als (objects and background) by themselves, i.e., Obj files,
HDR images and so on.

1.3. Noise Simulation

The noise in the spiking camera is mainly caused by dark
electric current. The process of brightness accumulation can
be updated as,

t
A, j,t) = /p (I(¢,7,7) + Laark (4,4, 7)) dr, (1)
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where A(i,j,t) is the brightness accumulation of pixel
(,7) at time ¢, ¢} is the last time before time ¢ where a
spike is fired from pixel (¢, 7) and Iq.x (7,4, 7) is a noise
random variable and expresses dark electric current. Note
that no noise is introduced in our proposed datasets due to
the lack of measurement of noise variables.
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1.4. Event Camera Simulation

In addition to spike camera simulation, we also provide
event camera simulation. Specifically, when the change of
light intensity reaches the predefined threshold ¢, an event
(x,y,t,p) is sent, i.e.,

‘lOg(I(l’,y,t)) - lOg(I(Cay,tng)” >= d)a ()

where t5"7 express the time when the last event is fired at
the pixel (x, y) and p is the polarity of the event where p =
1 (-1) if the change is positive (negative). All code of SPCS

is based on python.
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Figure 1. The design of the initial position of objects.

2. Details of Datasets
2.1. SPIFT: Spikingly Flying Things

The whole SPIFT is genrated by the function “Random
scenes”. Specifically, we collected a total of 30 object mod-
els and 50 background images, and randomly selected 8 ob-
jects and 1 background from the objects as a random scene
each time. In addition, objects and camera are added with
motion, including translation and rotation. Furthermore, we
use some tricks to control the diversity and effectiveness of
the scene. To ensure the effectiveness of the scene, by cal-
culating the imaging range of the camera, we put the initial



Table 1. Average end point error comparison with other methods for estimating optical flow on PHM datasets under “A¢ = 10” and
“At = 20” settings. The best results for each scene and the best average results are marked in bold.

Method Input Ball Cook Dice  Doll Fan Fly Hand Jump Poker Top | AVG.
TFP-Winl5 | 0.587 2539 0999 0475 0571 9930 4.118 0273 1.014 2.348 | 3.013

S RAFT TFP-Win25 | 0.732 2.609 0958 0.568 0.608 9.687 4268 0324 0.949 2.399 | 3.001
L' TFP-Win35 | 0.658 2.595 0936 0.363 0479 10.059 3916 0.232 0.854 2.297 | 2.980
< TFI 0.618 2498 0930 0.545 0499 10.189 3.178 0373 0.795 2.403 | 2.954
SCFlow | Raw-Spike | 0.671 1.651 1.190 0.266 0.298 8783 1.692 0.120 1.030 2.166 | 2.457
TFP-Winl5 | 1.317 4521 1.796 1.079 0919 22.105 7.172 0326 1.679 4.515 | 6.171

8 RAFT TFP-Win25 | 1.442 4.161 1.762 0570 0.740 22.090 6.866 0.268 1.646 4.330 | 6.004
L' TFP-Win35 | 1.383 4.417 2.042 0.800 0.709 21.837 6.714 0.268 1.468 4.335 | 6.033
< TFI 1.402 4309 1771 0959 0.859 22.619 7.546 0.454 1399 4981 | 6.232
SCFlow | Raw-Spike | 1.157 3.430 2205 0.507 0.578 21.127 4.018 0.267 1.922 4.327 | 5.568

position of all objects within the field of view of the lens
as shown in Fig.1. To ensure the diversity of the scene, we
randomly change the size of the imported objects, the speed
of object motion and the texture information of the objects.

2.2. PHM: Photo-Realistic Motion

Each scene in PHM is carefully designed and has a lot
in common with the real world, i.e., the motion of objects
follows to the laws of physics. Besides, scenes in PHM con-
tains the following properties:

1) Most areas in scenes have relative motion with sensors.
2) There is shielding between objects.

3) There is much difference in the size and motion of dif-
ferent objects.

3. Details of Training

During training procedure, the size of input spikes is ran-
domly cropped to 480 x 800. We use Adam optimizer with
the initial learning rate of le-4 and set the batch size as
4. For “At = 10” setting, we train the network on SPIFT
dataset for 40 epochs. We scale the learning rate by 0.7 at
every 5th epoch before 10 epochs and every 10th epoch af-
ter 10 epochs. For “At = 20” setting, we trian the network
on SPIFT dataset for 80 epochs. We scale the learning rate
by 0.6 at every 5th epoch before 5 epochs and every 10th
epoch after 5 epochs.

For EV-FlowNet and Spike-FlowNet in comparison re-
sults in the main body, we warm up the learning rate for 3
epochs for a better convergence. For all the methods except
RAFT, we set the weights of ¢; loss constructed by output
of each level as 1. For RAFT, we refer to the original train-
ing method [1] and decay the ¢; loss by 0.8 from the last
output to the first output.

4. Optical Flow from Reconstructed Images

For estimating optical flow from spike stream, an intu-
itive solution is to reconstruct image sequences from spike
stream firstly, and then use frame-based methods to estimate
optical flow. However, when the spike stream over a period
of time is converted into a two-dimensional image, there is
a time offset between the reconstructed image and the real
scene which would bring additional errors to optical flow
estimation. Here, we compare our SCFlow with traditional
frame-based optical flow methods. We choose the state-of-
the-art method RAFT [1] to be compared. For each tradi-
tional frame-based method, We use two categories of input:

A Gray image reconstructed through spike interval (Tex-
ture From Interval, TFI) [6] at each pixel.

B Gray image reconstructed through spike counting
(Texture From Playback, TFP) [6] at each pixel with
the length of temporal window equals to {15, 25, 35}.

Though there are more accurate reconstruction methods
for the spiking camera [2—5], the computational complexity
of the methods are so high that they could cost a few min-
utes for a frame, which is not appropriate for an end-to-end
neural network.

The experimental results with gray images reconstructed
from spike in At = 10 and At = 20 settings are shown
in Table 1 . As shown in the tables, our SCFlow outper-
forms all other compared methods in average performance
on PHM dataset. The visualization of the comparison with
frame-based methods are shown in Fig. 2 and Fig. 3.
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Figure 2. Visualization comparison with frame-based methods in At = 10 setting.
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Figure 3. Visualization comparison with frame-based methods in At = 20 setting.
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