
In the supplementary material, we provide a discussion
on the potential negative impact and limitations of PDV in
Appendix A and Appendix B, respectively. We also provide
additional detailed results on the Waymo Open Dataset [6]
in Appendix C as well as on the KITTI dataset [2] in Ap-
pendix D. Finally, we provide visualizations of the point
density variations across distance in Appendix E.

A. Potential Negative Impact

As autonomous driving progresses towards public use,
PDV has the potential to be used for surveillance of civil-
ians. Privacy is a large concern in the digital age, and it is
important to ensure that this information is not used without
consent or to maliciously track people’s location.

Unlike other domains where safety concerns are min-
imal, reliable 3D object detection in autonomous driving
is extremely important. Objects that are missed or even
misclassified could have detrimental effects in subsequent
decision-making tasks for the vehicle, running a risk for
both the passengers and other individuals sharing the road.
It is important to take the results of 3D object detection
methods on improved benchmarks as only one aspect for
reliable 3D object detection as increased performance on a
metric is not indicative of the practicality of a method in a
real-world scenario.

B. Limitations

Voxel Resolution. PDV shows the most improvement com-
pared to other methods on large input spaces when the
voxel resolution is limited, such as on the Waymo Open
Dataset [6]. However, when the voxel resolution is suffi-
ciently high, the improvements from PDV are less signif-
icant, as is the case on the KITTI dataset [2]. At higher
voxel resolutions, the difference between the voxel center
and the voxel point centroids decreases, resulting in less
performance gains. Additionally, at high voxel resolutions,
each occupied voxel represents a decent approximation of
the point density, which can be captured through standard
convolutions. Thus, PDV is most suited for when low voxel
resolutions are necessary, such as for 360° detection, where
the point density feature can be fully exploited for better
performance.
LiDAR Dependency. PDV uses point density as an addi-
tional encoding feature, and therefore relies on the LiDAR
specifications for accurate 3D object detection. Although
PDV is tested on the KITTI dataset [2] and the Waymo
Open Dataset [6], which have different LiDAR character-
istics, it is necessary to expand other datasets to ensure that
PDV is robust to different LiDAR sampling patterns. Some
examples include Nuscenes [1], which uses a 32 beam Li-
DAR, and Cirrus [8], which uses a LiDAR designed for long
range detection.

Method Pedestrian LEVEL 1 mAP/mAPH
0-30m 30-50m 50m-Inf

PDV (Ours) 80.32/73.60 72.97/63.28 61.69/50.07

Method Pedestrian LEVEL 2 mAP/mAPH
0-30m 30-50m 50m-Inf

PDV (Ours) 75.26/68.82 65.78/56.85 47.46/38.30

Table 9. Performance comparison on the Waymo Open Dataset
with 202 validation sequences for 3D pedestrian (IoU = 0.5) de-
tection across distance.

Method Cyclist LEVEL 1 mAP/mAPH
0-30m 30-50m 50m-Inf

PDV (Ours) 80.86/79.83 62.61/61.45 46.23/44.12

Method Cyclist LEVEL 2 mAP/mAPH
0-30m 30-50m 50m-Inf

PDV (Ours) 80.42/79.40 58.95/57.87 43.05/41.09

Table 10. Performance comparison on the Waymo Open Dataset
with 202 validation sequences for 3D cyclist (IoU = 0.5) detection
across distance.

Adverse Weather Conditions. PDV uses point density to
provide additional encoding in the second stage. If there is
a significant distribution shift in the LiDAR point density
during inference time, there may be significant degradation
in performance. For example, as highlighted in SPG [9], the
Waymo Kirkland dataset [6] has a different distribution of
points, where rainy weather results in a significant number
of points missing on objects. Since PDV relies on point den-
sity, a sudden shift in point density variations due to weather
may cause severe degradation in performance. A future im-
provement to PDV is to ensure robustness to potential shifts
in point density distributions during inference.

C. More Waymo Dataset Results

We show the Waymo Open Dataset validation results for
the pedestrian and cyclist classes across distance for PDV
using the first LiDAR return only in Table 9 and Table 10,
respectively. The distance evaluation is broken down into
three categories: 0 to 30 meters, 30 to 50 meters, and be-
yond 50 meters. We also show the multi-class results for
PDV using first and second LiDAR return in Table 11.
Overall, PDV utilizes the additional points from the sec-
ond LiDAR return better than PV-RCNN++, providing the
largest performance increase on the cyclist class.

D. More KITTI Dataset Results

We provide KITTI dataset results on the val set on 3D
and BEV for AP|R11 and AP|R40 in Table 12, Table 13, and
Table 14. PDV’s performance is compared to PV-RCNN [4]
and CT3D [3].



Veh. (LEVEL 1) Veh. (LEVEL 2) Ped. (LEVEL 1) Ped. (LEVEL 2) Cyc. (LEVEL 1) Cyc. (LEVEL 2)
Method

mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH
PV-RCNN† [4] 77.51 76.89 68.98 68.41 75.01 65.65 66.04 57.61 67.81 66.35 65.39 63.98
PV-RCNN++ [5] 78.79 78.21 70.26 69.71 76.67 67.15 68.51 59.72 68.98 67.63 66.48 65.17
PDV (Ours) 79.43 78.89 70.47 69.98 76.94 68.09 68.07 60.00 71.45 70.18 69.11 67.88
Improvement +0.64 +0.68 +0.21 +0.27 +0.27 +0.94 -0.44 +0.28 +2.47 +2.55 +2.63 +2.71

Table 11. Performance comparison on the Waymo Open Dataset with 202 validation sequences for 3D vehicle (IoU = 0.7), pedestrian
(IoU = 0.5) and cyclist (IoU = 0.5) detection using first and second LiDAR return. †: Results are from [5].

Car 3D (R11) Pedestrian 3D (R11) Cyclist 3D (R11)Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
PV-RCNN? [4] 89.35 83.69 78.70 64.60 57.90 53.23 85.22 70.47 65.75
CT3D? [3] 89.11 85.04 78.76 61.74 56.28 52.51 85.04 71.71 68.05
PDV (Ours) 89.52 84.03 79.09 65.83 61.18 55.87 90.48 73.23 69.55
Improvement +0.41 -1.01 +0.33 +1.23 +3.28 +2.64 +5.26 +1.52 +1.50

Table 12. 3D detection results on the KITTI val set for car, pedestrian, and cyclist classes using AP|R11 . ?: Results are taken from publicly
released models [3, 4, 7].

Car BEV (R11) Pedestrian BEV (R11) Cyclist BEV (R11)Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
PV-RCNN? [4] 90.09 87.90 87.41 67.01 61.38 56.10 86.79 73.55 69.69
CT3D? [3] 90.25 88.18 87.78 64.23 59.84 55.76 90.94 73.68 71.21
PDV (Ours) 90.33 88.33 87.91 69.01 63.54 59.46 90.77 73.75 71.21
Improvement +0.08 +0.15 +0.13 +2.00 +2.16 +3.36 -0.17 +0.07 +0.00

Table 13. BEV detection results on the KITTI val set for car, pedestrian, and cyclist classes using AP|R11 . ?: Results are taken from
publicly released models [3, 4, 7].

Car BEV (R40) Pedestrian BEV (R40) Cyclist BEV (R40)Method Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
PV-RCNN? [4] 93.02 90.33 88.53 67.97 60.52 55.80 91.02 74.54 69.92
CT3D? [3] 95.92 91.35 89.29 64.41 59.18 54.86 92.60 75.40 71.31
PDV (Ours) 93.60 91.14 90.74 69.40 63.42 58.70 93.09 76.08 71.46
Improvement -2.32 -0.21 +1.45 +1.43 +2.90 +2.90 +0.49 +0.68 +0.15

Table 14. BEV detection results on the KITTI val set for car, pedestrian, and cyclist classes using AP|R40 . ?: Results are taken from
publicly released models [3, 4, 7].

E. Point Density Distance Plots
Figure 7 shows point density across distance plots for

PV-RCNN [4] and PDV. By using the relationship between
distance and point density (number of points within each
final bounding box prediction), PDV effectively reduces the
number of false positives outside the distribution of training
samples across distance.
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Figure 7. From left to right column: Number of points in ground truth boxes across distance for cars, pedestrians and cyclists on the
KITTI dataset. The first row shows the distribution of training samples on the train split. The second and third row show the predictions of
PV-RCNN [4] and PDV on the KITTI val split, respectively. Blue predictions are true positives while orange predictions are false positives
for cars (IoU < 0.7), pedestrians (IoU < 0.5), and cyclists (IoU < 0.5).
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