
QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation

Xueqi Hu1, Xinyue Zhou1, Qiusheng Huang1, Zhengyi Shi1, Li Sun1,2*, Qingli Li1

1Shanghai Key Laboratory of Multidimensional Information Processing,
2Key Laboratory of Advanced Theory and Application in Statistics and Data Science,

East China Normal University, Shanghai, China

A. Limitations

We now discuss the limitation mainly existing in the ex-

periments. Our goal is to select the significant features

which are domain-specific for contrastive learning, there-

fore, we choose CUT as a baseline. But we do not imple-

ment our QS-Attn module in other I2I models due to limited

training resources, such as bi-directional [10] and multi-

domain I2I tasks [1, 2], although we think it should also

work in them. Moreover, the training speed of our model

is slower than CUT due to the complex matrix multiplica-

tion in global attention, but our model with local attention

mitigates this problem, refer to Appendix C for details.

B. Network Architectures

In this section, we provide the network structure of our

method, including the generator and discriminator. The de-

tailed architectures of them are illustrated in Appendix B.1

and Appendix B.2.

B.1. Generator

Our generator G consists of two down-sampling blocks,

nine intermediate blocks, two up-sampling blocks and two

convolution layers for input and output. We apply Instance

Normalization (IN) [8] and ReLU [5] in the generator, ex-

cept for the output layer, which uses Tanh as the activation

function. The network before the sixth residual block is

regarded as the encoder E and the rest is the decoder. We

adopt the multi-layer feature extraction in CUT, which takes

the features from five layers. including the input image, the

first and second down-sampling blocks, and the first and

fifth residual blocks.

B.2. Discriminator

We apply a PatchGAN [7] discriminator in our model,

which contains three down-sampling blocks and two convo-

lution layers. Leaky ReLU [5] is employed as the activation

in the discriminator.

C. Training details

Under three settings of QS-Attn, Global, Local, and Lo-
cal+Global, we train the models for 400 epochs with the

batch size of 1, the initial learning rate is set to 2 × 10−4,

and linearly decays to 0 in the last 200 epochs. All net-

works are optimized by the Adam optimizer [4], in which

β1 = 0.5 and β2 = 0.999.

D. Query-Selection Algorithm

There are three query-selection algorithm we proposed:

Global, Local, and Local+Global. The pseudo-code in Py-

Torch style is provided in Algorithm 1,2 and 3.

E. Additional Ablation Study

In the previous discussion, we placed the emphasis on

the query selection and cross domain value routing. Fur-

thermore, in this section, we conduct an additional ablation

study of applying our QS-Attn (Global) module in different

layers. Quantitative results are illustrated in Appendix E,

and visual results are shown in Fig. 1. Model A is our ini-

tial model, we only employ the QS-Attn on the last two

layers, and randomly select points on the first three lay-

ers. In model B, we intend to utilize features from all lay-

Algorithm 1 QS-Attn (Global)

1 # H: height, W: width, C: dimension, N: number
of selected queries

2 # feat: input tensor (H, W, C)
3
4 feat_q = feat.flatten(0, 1)
5 feat_k = feat_q.permute(1, 0)
6 dots_global = torch.bmm(feat_q, feat_k)
7 attn_global = dots_global.softmax(dim=1)
8 prob = -torch.log(attn_global)
9 prob = torch.where(torch.isinf(prob), torch.

full_like(prob, 0), prob)
10 entropy = torch.sum(torch.mul(attn_global,

prob), dim=1)
11 _, index = torch.sort(entropy)
12 patch_id = index[:N]
13 attn_QS = attn_global[patch_id, :]
14 feat_out = torch.bmm(attn_QS, feat_q)



Algorithm 2 QS-Attn (Local)

1 # H: height, W: width, C: dimension, N: number
of selected queries, k: window size

2 # feat: input tensor (H, W, C)
3
4 feat_local = F.unfold(feat, kernel_size=k,

stride=1, padding=k//2)
5 L = feat_local.shape[1] # L = H * W
6 feat_k = feat_local.permute(1, 0).reshape(L, k

* k, C)
7 feat_q = feat.reshape(L, C, 1)
8 dots_local = torch.bmm(feat_k, feat_q).squeeze

(-1)
9 attn_local = dots_local.softmax(dim=1)

10 prob = -torch.log(attn_local)
11 prob = torch.where(torch.isinf(prob), torch.

full_like(prob, 0), prob)
12 entropy = torch.sum(torch.mul(attn_local, prob

), dim=1)
13 _, index = torch.sort(entropy)
14 patch_id = index[:N]
15 attn_QS = attn_local[patch_id, :].unsqueeze(1)
16 feat_v = feat_k[index, k * k, C]
17 feat_out = torch.bmm(attn_QS, feat_q).squeeze

(1)

Algorithm 3 QS-Attn (Local+Global)

1 # H: height, W: width, C: dimension, N: number
of selected queries, k: window size

2 # feat: input tensor (H, W, C)
3
4 # Get patch_id from local attention.
5 feat_local = F.unfold(feat, kernel_size=k,

stride=1, padding=k//2)
6 L = feat_local.shape[1] # L = H * W
7 feat_k = feat_local.permute(1, 0).reshape(L, k

* k, C)
8 feat_q = feat.reshape(L, C, 1)
9 dots_local = torch.bmm(feat_k, feat_q).squeeze

(-1)
10 attn_local = dots_local.softmax(dim=1)
11 prob = -torch.log(attn_local)
12 prob = torch.where(torch.isinf(prob), torch.

full_like(prob, 0), prob)
13 entropy = torch.sum(torch.mul(attn_local, prob

), dim=1)
14 _, index = torch.sort(entropy)
15 patch_id = index[:N]
16
17 # Select N rows in global attention matrix to

route value.
18 feat_q_global = feat.flatten(0, 1)
19 feat_k_global = feat_q.permute(1, 0)
20 dots_global = torch.bmm(feat_q, feat_k)
21 attn_global = dots_global.softmax(dim=1)
22 attn_QS = attn_global[patch_id, :]
23 feat_out = torch.bmm(attn_QS, feat_q_global)

ers. However, the spatial dimension of shallow features

is large, hence the computation of global attention matrix

Ag ∈ R
HW×HW is expensive and time-consuming. Take

the high demand of computing into consideration, we em-

ploy the average pooling to reduce the spatial size of the fea-

ture maps in first three layers. Then, the spatial size of fea-

tures from all layers is set to 64×64, thus Ag ∈ R
4096×4096.

Model B can compete with model A on the two tasks. Al-

though the average pooling decreases the computing ef-

fort, the calculation of Ag and entropy still occupies a great

Method Num of queries FID↓ SWD↓
QS-Attn

64
47.9 30.1

CUT 52.6 33.4

QS-Attn
128

40.9 28.5
CUT 46.5 33.8

QS-Attn
256

41.1 30.3

CUT 45.5 31.5

QS-Attn
512

45.6 31.1

CUT 53.5 32.8

Table 1. Ablation study for number of queries using in QS-Attn

and CUT.

Method Layers
Cat→Dog Horse→Zebra

SWD ↓ FID ↓ SWD ↓ FID ↓
A last 2 12.8 72.8 30.3 41.1

B all 12.6 73.1 32.5 40.4

Table 2. Ablation study of different layers for QS-Attn. Model

A is our initial model, which applies the QS-Attn on the last 2

layers. Model B involves all the five layers for QS-Attn. The best

performance is indicated in bold.

quantity of memory and time. As a result, Our model only

exerts the QS-Attn on two layers, which is more lightweight

and effective.

Moreover, We realize that intentionally selecting query

may reduce the required number. So we train QS-Attn

(Global) with 64, 128 or 512 queries on Horse → Zebra
dataset, and compare its performance with CUT. Tab. 1

demonstrates that the selection of queries is always valid

regardless of the number of queries. Moreover, when se-

lecting 128 queries, the performance of QS-Attn is better

than which under our original setting. It proves that entropy

selection strategy is effective from another perspective.

F. More Results

Numerous synthesis results of our model on Cityscapes,

Cat → Dog and Horse → Zebra datasets are shown below.

Besides, the visual results of baselines are also listed, in-

cluding FSeSim [9], CUT [6], CycleGAN [10] and MU-

NIT [3]. Fig. 2, Fig. 3, Fig. 4 illustrate the qualitative results

on Cityscapes, Cat → Dog and Horse → Zebra datasets, re-

spectively.

References
[1] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,

Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-

tive adversarial networks for multi-domain image-to-image

translation. In Proceedings of the IEEE conference on



Input A B Input A B

Figure 1. Ablation results of different layers for QS-Attn on two datasets.

Figure 2. Visual results on Cityscapes compared with baselines. The leftmost column are the input source images. In the remaining

columns, from left to right, are the translated results of our model, FSeSim, CUT, CycleGAN and MUNIT, respectively.

computer vision and pattern recognition, pages 8789–8797,

2018. 1

[2] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.

Stargan v2: Diverse image synthesis for multiple domains.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 1

[3] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.

Multimodal unsupervised image-to-image translation. In

Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 172–189, 2018. 2

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1

[5] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-

fier nonlinearities improve neural network acoustic models.

In Proc. icml, volume 30, page 3, 2013. 1

[6] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-

Yan Zhu. Contrastive learning for unpaired image-to-image

translation. In European Conference on Computer Vision,

pages 319–345. Springer, 2020. 2

[7] Jaemin Son, Sang Jun Park, and Kyu-Hwan Jung. Reti-

nal vessel segmentation in fundoscopic images with genera-

tive adversarial networks. arXiv preprint arXiv:1706.09318,

2017. 1

[8] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016. 1

[9] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. The

spatially-correlative loss for various image translation tasks.

In CVPR, 2021. 2

[10] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–

2232, 2017. 1, 2



QS-Attn CUT CycleGAN MUNITInput FSeSim

Figure 3. Visual results on Cat → Dog compared with baselines. The leftmost column are the input source images. In the remaining

columns, from left to right, are the translated results of our model, FSeSim, CUT, CycleGAN and MUNIT, respectively.



QS-Attn CUT CycleGAN MUNITInput FSeSim

Figure 4. Visual results on Horse → Zebra compared with baselines. The leftmost column are the input source images. In the remaining

columns, from left to right, are the translated results of our model, FSeSim, CUT, CycleGAN and MUNIT, respectively.


