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A. Limitations

We now discuss limitations, which we have already real-

ized, for our work. First, for the inversion task, although our

proposed method achieves improved reconstruction quality,

there are still some differences between the input and recon-

structed images, especially for the out-of-domain input. We

think it is mainly caused by the finite discriminative ability

of W+ space. As is described in [8], the distortion can be

significantly reduced by adding more information from the

source. Moreover, since we apply the multi-head attention,

the training speed is slower due to the complex matrix mul-

tiplication. Second, for the reference-based editing task, we

adopt a transformer-based module in the latent space, result-

ing in less diversity for some attributes compared with direct

editing on the images, in which the mode seeking loss [4]

can encourage the diversity in the pixel domain. But our

method is lightweight and more flexible.

B. Ablations and Analysis

We further validate the benefit of transformer by compar-

ing among pSp [5], our full model with both self- and cross-

attention and ours w/o self-attention in Tab. 1. [5] maps im-

age features to w+ by individual mapping networks, though

w+ obtain the image features directly and completely, the

relation between each w is not tightly enough. In our model,

cross-attention is necessary to update queries by fusing im-

age features, and self-attention is also important in con-

structing the potential relation between queries.

C. Label-based Editing Methods

We propose first- and second-order label-based editing

methods in the main text. To give a detailed explanation, we

provide the pseudo codes in PyTorch style. Algorithm 1 and

Algorithm 2 illustrate the first- and second-order methods,

respectively. Moreover, we measure the disentanglement of

five attributes by Re-scoring [6] in Fig. 1. The top row lists

edited attributes, and the scores are the classification logits

Method MSE↓ LPIPS↓ Params(M)↓FLOPs(G)↓Time(s)↓
pSp 0.0373 0.1693 267.3 72.55 0.0668

Ours w/o self 0.0369 0.1716 37.3 36.31 0.0429
Ours full 0.0363 0.1665 40.6 36.37 0.0436

Table 1. Ablations of transformer structure. Time means the infer-

ence time of an iteration. The best results are indicated in Bold.

Method Quality(%) Disentanglement(%)

BA GE GO BA GE GO

InterFaceGAN 15.00 7.50 9.17 11.67 1.67 8.33

StyleSpace 10.83 10.00 13.33 18.33 15.00 10.83

Ours-1 25.83 39.17 31.67 35.83 34.17 30.00

Ours-2 48.33 43.33 47.50 34.17 49.17 49.17

Table 2. User study of label-based editing compared with [6], [9].

BA, GE and GO represent ‘Bangs’, ‘Gender’ and ‘Goatee’ at-

tributes.

Smile Bangs Gender Glass Age
Smile 0.45 -0.01 0.00 -0.03 -0.02
Bangs 0.00 0.52 0.00 0.00 0.00
Gender -0.01 -0.02 0.55 0.02 0.03
Glass 0.00 0.00 0.01 0.52 0.01
Age -0.02 -0.03 0.04 0.12 0.45

Smile Bangs Gender Glass Age
Smile 0.45 -0.02 0.00 -0.05 -0.03
Bangs 0.00 0.52 0.00 0.00 -0.01
Gender -0.03 -0.03 0.54 0.02 0.03
Glass 0.00 0.00 0.01 0.52 0.01
Age -0.05 -0.04 0.06 0.13 0.45

(a) Ours-1 (b) Ours-2

Figure 1. Re-scoring results of label-based editing on five at-

tributes, Ours-1 and Ours-2 represent our first- and second-order

methods, respectively.

changes between original and edited images. Considering

human judgements, we further conduct a user study. We

ask 60 volunteers to evaluate the methods in two aspects:

image quality and disentanglement. Results are shown in

Tab. 2.

D. Training Details

We adopt a pretrained StyleGAN2 [1] generator in our

experiments, in which the synthesis network is fixed and



the mapping network (MLP) is trained. In the multi-head

attention of the transformer block, the number of heads is

set to 4, and the dimension of each head is 512. For inver-

sion task, the Ranger optimizer is used in training, which

is a combination of Rectified Adam [3] with the Lookahead

technique [10]. We train the model for 6 × 105 iterations

with a batch size of 8, the learning rate is set to 1 × 10−4.

For the reference-based editing task, we use the Adam [2]

optimizer to train the model for 1 × 104 iterations with a

batch size of 8, the learning rate is set to 1 × 10−3. All

experiments are implemented on 2 NVIDIA RTX 2080Ti

GPUs.

E. More Results
In this section, we provide more results of inversion,

label-based editing and reference-based editing in Fig. 2,

Fig. 3, Fig. 4.

Algorithm 1 First-order Label-based Editing

1 # w: input latent code (18, 512), C: latent
classifier, y_t: target label

2
3 predicted = C(w)
4 loss = torch.nn.BCELoss(predicted, y_t)
5 loss.backward()
6 direct = w.grad
7 direct = direct / torch.norm(direct, dim=1)
8 w_edit = w - alpha * direct # alpha is a

scaling factor.

Algorithm 2 Second-order Label-based Editing

1 # w: input latent code (18, 512), C: latent
classifier, y_t: target label

2
3 r_d = torch.randn(18, 512)
4 r_0 = torch.zeros(18, 512)
5 w_d = w + kasi * r_d # kasi is a small number

, we set it to 10e-4.
6 w_0 = w + r_0
7 predicted_d = C(w_d)
8 loss = torch.nn.BCELoss(predicted_d, y_t)
9 loss.backward()

10 direct_d = r_d.grad
11
12 C.zero_grad()
13 predicted_0 = C(w_0)
14 loss = torch.nn.BCELoss(predicted_0, y_t)
15 loss.backward
16 direct_0 = r_0.grad
17 direct = direct_d - direct_0
18 direct = direct / torch.norm(direct, dim=1)
19 w_edit = w - alpha * direct # alpha is a

scaling factor.
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Figure 2. More results of inversion compared with [5] and [7].



Source Arched Eyebrows Big Lips Goatee Heavy Makeup Age

Figure 3. More results of label-based editing on five attributes.
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Figure 4. More results of reference-based editing on three attributes. The edited images take the style of Bangs, Mouth and Gender from

different reference images.


