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A. Extra experiments
A.1. Density map

Gaussianization. Assuming we have the label as Y =
[y1, y2, . . . , yn]. A pair of yi and yj represents the frames at
the beginning and end of a repetition action where j = i+1.
To calculate the Gaussian function [2] with 99% confidence
interval shown below, we need to figure out the mean µ and
the variance σ. Because of 99% confidence interval mean-
ing µ± 3σ, we could get µ and σ by yi,j = µ± 3σ, where
i and j is the pair of the frames.

Therefore, through the Gaussian function gσ(x), we can
get the probability density distribution Gσ(y) from yi to yj .
Then dk can take the integral by Eq. (1). At last, we could
get the predict results of density map D = [d1, d2, . . . , dn].

dk =

∫ yk+0.5

yk−0.5

Gσ(y)dy, k ∈ [i, j] (1)

To compare different generate methods of density map,
We adjust the mean µ of the Gaussian function to the begin-
ning frame of one period or the ending and retrain the model
which has a merging density map predictor. Then we obtain
the output of different positions by adjusting the weight of
predict density maps.

RepCount A
Generate density map MAE↓ OBO ↑

Begin 0.5295 0.2052
Mid 0.4936 0.2052
End 0.5192 0.192

Merge 0.5142 0.2009

Table 1. The density maps with different mean µ of the Gaus-
sian function G. Begin is means the density map generated with
G, where the µ is the beginning frame. Similarly, End represents
the µ is the ending frame. Mid is as same as our model TranRAC.

The result as the Tab. 1 shown, Merging density maps
does not give the models better performance. Because the
amount of video frames is 64, moving µ to begin or end
will lose the information of the first period or the last. The
density map generated by the mean in the mid-frame has the
best effort.

A.2. Sample rate

We conducted the experiment to verify the impact of
adding the number of video frames. Due to our model based

on the density map, we use a one-dimensional spatial distri-
bution to represent the distribution of periods in time.

RepCount A
Method MAE↓ OBO ↑

Ours(single)-64 0.6595 0.185
Ours(single)-128 0.6191 0.191

Table 2. Experiment results of model with different sample rate
when trained on train set of RepCount part-A. 64 and 128 indicates
different frame sample number from initial videos.

Experimental results show that increasing video frames
can improve the performance of density maps to a certain
extent (see Tab. 2). A better result in terms of MAE error is
achieved when we select 128 frames of a video.

A.3. Scale ablation

We verify the effect of different scales by building tree
pipelines, where the input of Encoder ϕ with distinct length
video subsequences. As shown in the one to three rows of
Tab. 4, because the different temporal scales of video subse-
quence extract information in their scale, they have differ-
ent performances of repetition counting. Concatenating the
multi-scale video sequences contributes to capturing differ-
ent period length actions and brings the model greater ro-
bustness.

A.4. Receptive field

Usually, a more large video subsequence of scale has a
more substantial receptive field. And considering the more
large sample rate will extract more video information, we
compared the different video subsequences of scale at dif-
ferent sample rates.

As Tab. 5 indicated, when the sample rate is the little
one, 64 frames extracted from one original video, single-
frame is as similar as 8-frames. But increasing the sample
rate to 128, The performance of 8-frames is far better than
that of single-frames.

We believe that there is an optimal scale of video subse-
quence for the same dataset under the same sampling rate.
Due to the operation of sampling video to the fixed num-
ber of frames, the duration of per repetitive action will be
shorter with the decrease of the sample rate. Large-scale
video sequences will lose their advantages when the sam-
ple rate is 64 frames per video because of the shorter dura-
tion. But when the sampling rate increases to 128, there



Division Regular setting Open-set setting
Num. of videos Total frames Num. of videos Total frames

Train 758 637,545 655 560,402
val 131 109,854 130 77,103
test 152 129,993 256 239,887

Table 3. Regular setting and Open-setting of RepCount partA

RepCount A
Method MAE↓ OBO ↑
Scale-1 0.6595 0.1854
Scale-4 0.5434 0.2649
Scale-8 0.6657 0.192

Ours 0.4431 0.2913

Table 4. The experimental results of pipelines with different
scales. Scale-i, where i ∈ {1, 4, 8}, represents the temporal
length of video subsequence, which is the input of Encoder ϕ.
The Ours, means cancatenating three scales video subsequence
together, have the lowest MAE. We build all the above models
by extracting 64 frames from the original video.

RepCount A
Samle rates Scales MAE↓ OBO ↑

64 Scale-1 0.6595 0.185
Scale-8 0.6657 0.192

128 Scale-1 0.6191 0.191
Scale-8 0.4926 0.2302

Table 5. Performance of different scales at different sample
rates. The first column, sample rates, indicates different frame
sample number from initial videos. Scale-i, where i ∈ {1, 8},
represents the temporal length of video subsquence.

is more difference reflected between different video sub-
sequence scales. Although single-frame has improved the
MAE and OBO, the progress of 8-frames is more excellent.

A.5. Compare to action segmentation

We elaborate the definitions and differences between ac-
tion segmentation and repetitive action counting. Given an
input video, action segmentation is to segment the tempo-
ral bound for different types of actions but repetitive ac-
tion counting aims to count the number of repetitive ac-
tion [1, 4]. Two main differences are as follows: i) for ac-
tion segmentation, the same action continuously repeating
many times will be segmented into a single temporal bound.
Thus, it is difficult to handle videos with high-frequency
repetitive actions. However, the variation in the frequency
of repetitive action is huge, e.g., the min/max cycle length
is 0.1/10.96 in our dataset, which degenerates action seg-

mentation method; ii) action segmentation can only address
predefined action types and cannot handle open-set setting,
where action types in the test set that do not exist in the
training set. However, repetitive counting is to record re-
peated actions regardless of the action category.

To verify the above differences, we further perform ex-
periments in Tab. 6. Under both settings of Tab. 3, our
method achieves better performance compared to action
segmentation [3]. Therefore, our task is not a trivial case
of action segmentation.

Method regular setting Open-set setting
MAE↓ OBO↑ MAE↓ OBO↑

Huang et al. [3] 0.5267 0.1589 1.0000 0.0000
Ours 0.4431 0.2913 0.6249 0.2040

Table 6. Performance of different methods on two settings of Rep-
Count partA.

B. Dataset description
B.1. Data duration

The duration in Table 1 means video length, not the cycle
length of each action, which shows that our dataset contains
longer videos. In addition, not only the short action but the
diversity of actions makes the task harder and more useful.
The min/max cycle length between Ours and UCF526 [4] is
(0.1/10.96 vs 0.12/6.76), which shows our dataset is more
challenging.

B.2. Open-set setting

We add an open-set setting to demonstrate the better abil-
ity of our method when dealing with unseen action types in
the training set. Therefore, we re-split the RepCount partA
into a new train/val and test subset. For regular settings,
videos are divided randomly. For Open-set setting, the ac-
tion types in train/val/test are disjoint, where the actions in
the test set do not appear in the training set. More details
show in Tab. 3.
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