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1. TransNAS-Bench-101

1.1. Tasks

There are 7 tasks in TransNAS-Bench-101 [3] (TB101),
namely Object Classification (Cls.O), Scene Classification
(Cls.S), Autoencoding (Auto.), Surface Normal (Normal),
Semantic Segmentation (Sem.Seg.), Room Layout (Room.)
and Jigsaw Puzzle (jigsaw). These tasks are carefully cho-
sen to ensure both diversity and similarity across tasks from
Taskonomy [11]. More analysis of similarities of these
tasks can be found in [3].

1.2. Search Spaces

There are two search spaces in TB101: Macro-level
Search Space and Cell-level Search Space.
Macro-level Search Space. It contains architectures with
different depths (the total number of blocks), locations to
down-sample feature maps, and locations to raise channels.
Two residual blocks are first grouped to form a module.
Each architecture then contains 4 to 6 such modules. The
module positions can be chosen to downsample the input
feature maps 1 to 4 times, and each time the spatial size
will shrink by a factor of 2. The network can double its
channel 1 to 3 times at chosen locations. This search space
thus consists of 3,256 unique architectures.
Micro-level Search Space. It is similar to NAS-Bench-201
that is obtained by assigning different operations (as edges)
transforming the feature map from the source to the target
node. The predefined operation set has L = 4 representa-
tive operations: zeroize, skip-connection, 1× 1 convolution
and 3 × 3 convolution. The macro-level skeleton is fixed,
which contains five modules with doubling channel and
down-sampling feature map operations at the 1st, 3rd, and
5th modules. This search space thus contains 46 = 4, 096

*Corresponding author.

architectures.

1.3. Architecture Encoding

Previous works [4, 9] have empirically shown that us-
ing Graph Convolutional Network (GCN) is helpful for bet-
ter representing cell-based structures. Therefore, for micro-
level search space, we follow [4] to transform the operation-
on-edge setting to operation-on-node setting. Hence, a cell-
based architecture can be represented uniquely by a node
feature matrix where a one-hot vector represents the opera-
tion. More details can be found in Fig. 1.

For Macro-level search space, we also use graph rep-
resentation for architectures. We use one-hot vectors to
encode what operation (downsample, double channels, or
both) is performed in each module. Take Fig. 1(right) for
example, X is the node feature matrix of the architecture
where we double the channel in the 2nd and the 3rd mod-
ule, downsample the feature map in the 4th module and both
double the channel and downsample the feature map in the
5th module.

2. Maximal Weighted Acyclic Subgraph
Maximal Acyclic Subgraph (MAS) problem was in-

cluded by R.Karp in his list of 21 NP-complete problems
[6], which is defined in Definition 1.

Definition 1 The Maximal Acyclic Subgraph (MAS) of G is
a graph Ĝ = (V, Ê) such that Ê ⊆ E , Ĝ has no cycles and
the number of edges |Ê | is maximal.

This concept is very helpful after we obtain the Archi-
tecture Relation Graph, since we want to drop as few edges
as possible to make the Relation Graph acyclic. Cvetkovic
et al. proposed an algorithmic solution [2] to the max-MAS
problem2, which is closely related to the MAS problem by
treating it as the following optimization problem. ρ is the
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Figure 1. (Left, operation on edge) Graph representation of structures in micro-level search space. (Middle, operation on node) Equivalent
representation of structures in micro-level search space. (Right) Graph representation of structures in macro-level search space. X is the
feature matrix of an architecture where it doubles its channel in the 2nd and the 3rd module, downsample the feature map in the 4th module
and both double the channel and downsample the feature map in the 5th module.

spectral radius and B(A, r) is the L1 ball of radius r cen-
tered at A.

min ρ(X)

s.t. X ∈ B(A, r)
(1)

Definition 2 (The max-MAS problem) Finding the minimal
integer r such that a given graph G with adjacency matrix
A can be made acyclic by cutting at most r incoming edges
from each vertex.

The reason why we want to minimize the spectral radius
of X is the following proposition.

Proposition 1 Let G be a directed graph of interest and
A ∈ Rn×n be its adjacency matrix, then G is acyclic if
and only if the spectral radius of A is zero.

Proof 1 (⇐) Let A = V JV −1 be the Jordan Normal Form
of A, where J = diag(Jm1

(λ1), Jm2
(λ2) . . . Jms

(λs)) and
Jmi

(λi) is a Jordan block. Then An = V JnV −1 = 0 by
the property of a Jordan block and ρ(A) = 0. Hence, G has
no walks of length n, and therefore it can’t have cycles.

(⇒) If G is acyclic, then it can’t have walks of length
n + 1. This is equivalent to An+1 = 0, which implies that
ρ(A) = 0.

The solution of max-MAS problem gives us a good approx-
imation of the original graph. However, what we want is not
only a subgraph without cycles, but also a subgraph which
we can trust those edges in it. This naturally leads to the def-
inition of Maximal Weighted Acyclic Subgraph that mini-
mizes the distance between the subgraph and the original
graph, while maximizing edge weights inside it.

When constructing the edge weight matrix, the d in the
definition of Trust Score can be computed with respect to
any representation of the data. For example, it can be the

raw input, an unsupervised embedding of the space, or ac-
tivations of intermediate representations of the classifier. In
our work, we simply follow [5] and use the nearest neighbor
distance.

3. Multi-task NAS setting

To further illustrate the effectiveness of Arch-Graph,
we conduct an experiment on a more difficult setting by
considering finding an architecture that is good on cer-
tain task combination τ (i) = {τ1, τ2, ..., τin}, simultane-
ously. We implement weakNAS and BONAS on τ (i) re-
spectively and get a predicted average rank within τ (i) for
each candidate. For Arch-Graph, we can construct a graph
with in weighted directed edges between nodes. To con-
sider the influence from multiple tasks, we simply add up
the (signed) weights to get a final relational graph and ap-
ply Algorithm 1 on it. The results are shown in Tab. 1
where τ (1) = {Auto.,Normal}, τ (2) = {Cls.O.,Cls.S.},
τ (3) = {Cls.O.,Cls.S., Jigsaw}. Arch-Graph outperforms
other methods in this setting and both BONAS and weak-
NAS witness significance performance gap with global
best. Remarkably, the average rank of our method over the
three different multi-task settings outperforms weakNAS
and BONAS by 41.5 and 117.7, proving the superiority of
Arch-Graph on more difficult settings.

Methods τ(1) τ(2) τ(3) Avg.

TB101

BONAS 285 42 111.3 146.1
weakNAS 11.5 151 47.3 69.9
Arch-Graph 11.5 32.5 41.3 28.4
Global Best 7 13 23.3 14.4

Table 1. Arch-Graph on multi-task NAS. Average rank given by
the ground truth ranking of the best architectures among the top
10 architecures predicted by the methods.



4. Visualization Results
We provide in Figs. 2 and 3 more visualizations results.

In both figures, the upper part is the result on the pretrain
task, jigsaw, after we pretrain the Pairwise Relation Predic-
tor for a budget of 50 models. Note that we can always
find the optimal architecture on jigsaw after the pretrain-
ing is completed. The lower part is the result on object
classification and semantic segmentation. On both tasks,
Arch-Graph can successfully adapt to each task, finding
reasonably-good architectures.

5. More Ablation Study
Early Stopping. As many previous works [1, 7] alluded
to, early stopping can help NAS reduce computational costs
and mitigate the overfitting problem. An architecture’s final
performance is in fact highly correlated with its partially
trained performance [7]. It is therefore possible to further
reduce computational costs, specifically by using the early
stopping performance of sampled architectures as training
samples of the pairwise relation predictor.

Methods τ↑ ρ↑ Avg. Rank↓

TB101

Insertion Sort 0.55 0.75 7.83
Selection Sort 0.57 0.76 10.49
Bubble Sort 0.58 0.78 6.33
Arch-Graph 0.61 0.79 5.24

NB201

Insertion Sort 0.63 0.71 3.60
Selection Sort 0.65 0.76 3.20
Bubble Sort 0.60 0.73 3.80
Arch-Graph 0.67 0.79 2.40

Table 2. MWAS on single-task NAS. Comparison of different
comparator-based sorting algorithms on macro level search space
of TransNAS-Bench-101 and NAS-Bench-201.

Summary of early stopping settings on different tasks
can be seen in Tab. 3. Comparisons among Arch-Graph
and other predictor-based NAS methods using early stop-
ping metric can be found in Tab. 4. We first notice that
almost all methods perform poorly on room layout. This is
because the correlation coefficients between early stopping
architectures and fully trained architectures on room layout
is quite small, with a Kendall’ τ of 0.28 and Pearson’s R of
-0.02.

Arch-Graph-zero is least influenced by the change of
early stopping. Arch-Graph also show comparable results
to it. In comparison, other methods all suffer from great per-
formance drop except for BONAS-t. This shows that com-
pared with previous predictor-based NAS methods, Arch-
Graph has the potential to be combined with more early
stopping techniques.
Comparator-based Sorting Algorithms.

In addition to Arch-Graph-zero that uses Insertion Sort
to get a rough ranking, we also include other comparator-

based sorting algorithms such as Selection Sort and Bub-
ble Sort in Tab. 2. The experiments are conducted
on TransNAS-Bench-101 (TB101) and NAS-Bench-201
(NB201). Here, the results on TB101 is the average of the
single task results on the all 7 tasks. As shown in Tab. 2,
Arch-Graph outperforms simple comparator-based sorting
algorithms in all metrics, proving the necessity and effec-
tiveness of MWAS.
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Figure 2. Comparison of searched results of jigsaw and semantic segmentation.
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Figure 3. Search results on jigsaw and object classification.


