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A. Theoretical insights of CaCo
A.1. Proof of Proposition 1

Proposition 1 The category contrastive learning can be modeled as a maximum likelihood (ML) problem optimized via
Expectation Maximization (EM).

Proof:
Maximum likelihood (ML) was initially proposed to model clustering tasks, and can be optimized by expectation maxi-

mization (EM). For our proposed category contrastive learning, the objective is to find the encoder weights θfq that maximizes
the log-likelihood function of both labeled data Xs and unlabeled data Xt:

θ∗fq = argmax
θfq

∑
xs∈Xs

log p(xs; θfq ) +
∑

xt∈Xt

log p(xt; θfq ). (1)

As the labeled data are with annotations, the first term of the right-hand side (RHS) in Eq. 1 can be maximized by the
supervised learning that minimizes a cross-entropy loss between the predictions of Xs and their annotations Ys:

argmin
θG

Lsup = argmin
θfq ,θh

∑
xs∈Xs,ys∈Ys

−ys log(h(fq(xs)))), (2)

where h is the category classifier and the combination of h and fq forms the visual task model G = h(fq(·)).
Please refer to [8,12,34] for the detailed proofs that minimizing the cross-entropy loss leads to the likelihood maximization.
As the unlabeled data are without annotations, CaCo maximizes the second term by the proposed category contrastive

learning. Below please find the proof.
We assume that the unlabeled samples Xt are related to latent variable {kc}Cc=1 which denotes the categorical keys of the

data. C stands for the number of categories. In this way, we can re-write the second term of the RHS in Eq. 1 as follows:

θ∗fq = argmax
θfq

∑
xt∈Xt

log

C∑
c=1

p(xt, kc; θfq ) (3)

As it is difficult to optimize Eq.3 directly, we utilize a surrogate function to lower-bound the log-likelihood function:

∑
xt∈Xt

log

C∑
c=1

p(xt, kc; θfq ) =
∑

xt∈Xt

log

C∑
c=1

D(kc)
p(xt, kc; θfq )

D(kc)

≥
∑

xt∈Xt

C∑
c=1

D(kc) log
p(xt, kc; θfq )

D(kc)
,

(4)

where D(kc) denotes some distribution over k’s (
∑C

c=1 D(kc) = 1), and the last step of derivation utilizes Jensen’s inequality

[10, 19, 26]. This equality holds if
p(xt,kc;θfq )

D(kc)
= Constant. Thus, we can get:

D(kc) =
p(xt, kc; θfq )∑C
c=1 p(xt, kc; θfq )

=
p(xt, kc; θfq )

p(xt; θfq )
= p(kc;xt, θfq ) (5)

By ignoring the constant−
∑

xt∈Xt

∑C
c=1 D(kc) logD(kc) in Eq.4, we are supposed to maximize:

∑
xt∈Xt

C∑
c=1

D(kc) log p(xt, kc; θfq ) (6)

Expectation step. We estimate the posterior probability p(kc;xt, θfq ). For this purpose, we conduct C-category pseudo
labeling on the key embeddings k = fk(xk) (xk ∈ Xs ∪ Xt) that are encoded by the momentum encoder to obtain



category-level keys {kc}Cc=1. The categorical key kc is defined as the key k that belongs to the c-th semantic category
(c = argmaxi ŷ

(i)
k ) and the predicted category label ŷk of k = fk(xk) is derived by:

argmax
ŷk

C∑
c=1

ŷ
(c)
k log p(c; k, θh), s.t. ŷ ∈ ∆C ,∀k (7)

where h is the category classifier that predicts C-category probabilities for each embedding (e.g., k), and ŷ =
(ŷ(1), ŷ(2), ..., ŷ(C)) is the predicted category label. To get the pseudo label ŷq of the query embedding q = fq(xt) (xt ∈ Xt)
encoded by current encoder, we simply repeat above steps by replacing all the notation “k” with “q”.

Next, we calculate p(kc;xt, θfq ) = ŷq×ŷkc , where ŷq×ŷkc = 1 if both refer to the same category; otherwise, ŷq×ŷkc = 0.
Maximization step. Now, we are ready to maximize the lower-bound in Eq.6.

∑
xt∈Xt

C∑
c=1

D(kc) log p(xt, kc; θfq ) =
∑

xt∈Xt

C∑
c=1

p(kc;xt, θfq ) log p(xt, kc; θfq )

=
∑

xt∈Xt

C∑
c=1

(ŷq × ŷkc) log p(xt, kc; θfq )

(8)

We assume a uniform prior over categorical keys. Then, we get:

p(xt, kc; θfq ) = p(xt; kc, θfq )p(kc; θfq ) =
1

C
· p(xt; kc, θfq ), (9)

where we let the prior probability p(kc; θfq ) for each kc as 1/C as no data is provided.
Under the assumption that the embedding distribution around each categorical key kc is an isotropic Gaussian [3], we get:

p(xt; kc, θfq ) = exp

(
−(q − k+)

2

2σ2
+

)/ C∑
c=1

exp

(
−(q − kc)

2

2σ2
c

)
, (10)

where q = fq(xt), and k+ is defined as the key kc that belongs to the same category as q (i.e., ŷq × ŷk+
= 1). By applying

ℓ2-normalization to q and k, we get (q − k)2 = 2− 2q · k. Combining this equation with Eqs.3, 4, 6, 8, 9, 10, we formulate
the likelihood maximization as:

θ∗fq = argmin
θfq

∑
xt∈Xt

− log
exp(q · k+/τ+)∑C
c=1 exp(q · kc/τc)

, (11)

where τ ∝ σ2 represents the density level of the embedding distribution around a categorical key (e.g., kc).
In practice, Eq. 11 can be achieved by minimizing a category contrastive loss:

argmin
θG

LCatNCE = argmin
θfq

∑
xt∈Xt

−
(

1

M

M∑
m=1

log

∑C
c=1 exp(q · kcm/τ cm)(ŷq × ŷkc

m
)∑C

c=1 exp(q · kcm/τ cm)

)
. (12)

Please note that Eq. 12 is an instance of Eq. 11. They look different becuase: 1) Eq. 11 uses k+ to denote the positive key
instead of using a complex expression to identify the positive key (i.e.,

∑C
c=1 exp(q · kcm/τ cm)(ŷq × ŷkc

m
)), for the simplicity

of theoretic proof; 2) Eq. 11 only shows one group of categorical keys instead of M -group categorical keys, for the simplicity
of theoretic proof.

A.2. Proof of Proposition 2

Proposition 2 The categorical contrastive learning is convergent under certain conditions.

Proof:
For the supervised learning on labeled data, please refer to [8,12,34] for the detailed proofs of the fact that the likelihood

maximization by minimizing the cross-entropy loss is convergent under certain conditions.
For the unsupervised learning on unlabeled data, please find the convergence proof below.
We let



L(θfq ) =
∑

xt∈Xt

log p(xt; θfq ) =
∑

xt∈Xt

log

C∑
c=1

p(xt, kc; θfq )

=
∑

xt∈Xt

log

C∑
c=1

D(kc)
p(xt, kc; θfq )

D(kc)

≥
∑

xt∈Xt

C∑
c=1

D(kc) log
p(xt, kc; θfq )

D(kc)
.

(13)

It has been illustrated in Section A.1 that the inequality in Eq.13 holds with equality if D(kc) = p(kc;xt, θfq ).
In the n-th Expectation-step, we estimate Dn(kc) = p(kc;xt, θ

n
fq
). Thus, we get:

L(θnfq ) =
∑

xt∈Xt

C∑
c=1

Dn(kc) log
p(xt, kc; θ

n
fq
)

Dn(kc)
. (14)

In the n-th Maximization-step, we fix Dn(kc) = p(kc;xt, θ
n
fq
) and optimize weights θfq to maximize Equation 14. Thus,

we always get:

L(θn+1
fq

) ≥
∑

xt∈Xt

C∑
c=1

Dn(kc) log
p(xt, kc; θ

n+1
fq

)

Dn(kc)

≥
∑

xt∈Xt

C∑
c=1

Dn(kc) log
p(xt, kc; θ

n
fq
)

Dn(kc)

= L(θnfq ).

(15)

Eq. 15 indicates that L(θnfq ) monotonously increases along with more training iterations.
As the log-likelihood is upper-bounded, our proposed category contrastive learning will thus converge.
We may utilize gradient descent to achieve Eq. 15 by minimizing the category contrastive loss in Eq. 12. With a proper

learning rate, this loss is guaranteed to decrease monotonically. In practice, network training is normally conducted with
mini-batch gradient descent instead of gradient descent. This may not strictly guarantee the monotonic decrease of the loss,
but will almost certainly converge to a lower one.

B. Discussion
B.1. Conceptual comparisons

We provided conceptual comparisons of different UDA methods in Table 1.

B.2. Comparisons with existing unsupervised representation learning methods

We compared CaCo with unsupervised representation learning methods over the UDA task. Most existing methods achieve
unsupervised representation learning through certain pretext tasks, such as instance contrastive learning [1,6,7,13,14,16,17,
28,41,45], patch ordering [9,27], rotation prediction [11], and denoising/context/colorization auto-encoders [31,38,47,48].
The experiments (shown in Table 2) over the UDA task GTA→Cityscapes show that existing unsupervised representation
learning does not perform well in the UDA task. The major reason is that these methods were designed to learn instance-
discriminative representations without considering semantic priors and domain gaps. CaCo also performs unsupervised
learning but works for UDA effectively, largely because it learns category-discriminative yet domain-invariant representations
which is essential to various visual UDA tasks.

B.3. Parameter studies

The parameter M (in the proposed CaCo) controls the length (or size) of the categorical dictionary. We studied M by
changing it from 50 to 150 with a step of 25. The experiments (shown in Table 3) over the UDA segmentation task GTA →
Cityscapes show that M does not affect UDA clearly while it changes from 50 to 150.



Methods Mec.
Cross-domain

adaptation

Intra-domain

adaptation

Category

aware

Task

generalizable

Setup

generalizable
Main assumption

AdaptSeg [36] AT ✓ × × × × Domain-invariant representations can be learnt via

adversarial training (AT) in output space (AdaptSeg),

entropy space (ADVENT), patch space (PatAlign), and context

space (CrCDA). They can also be learnt through sample

or class joint AT (CLAN and SIM), multi-level AT (SWDA),

regularized AT (CRDA), or intra-domain AT (IDA).

CLAN [24] AT ✓ × ✓ × ×
AdvEnt [39] AT ✓ × × ✓ ×
PatAlign [37] AT ✓ × × × ×
IDA [29] AT × ✓ × × ×
CrCDA [18] AT ✓ × × × ×
SIM [40] AT ✓ × ✓ × ×
SWDA [32] AT ✓ × × × ×
CRDA [42] AT ✓ × ✓ × ×

TIR [21] IT ✓ × × × × Domain-invariant representations can be learnt via

image translation (TIR), spectrum swapping (FDA).FDA [44] IT ✓ × × × ×

CBST [51] ST × ✓ ✓ ✓ × Category-discriminative representation can be learnt

via self-training (CBST), regularized ST (CRST).CRST [50] ST × ✓ ✓ ✓ ×

CaCo (ours) IC ✓ ✓ ✓ ✓ ✓
Category-discriminative yet domain-invariant

representation can be learnt via instance contrast (IC).

Table 1. Conceptual comparisons of different UDA methods. Mec. denotes Mechanisms. AT, IT, ST, and IC denote adversarial training,
image translation, self-training, and instance contrast, respectively.

Method mIoU gain
Baseline [15] 36.6 N.A.
Jigsaw [27] 38.5 +1.9

Rotation [11] 37.0 +0.4
Colorization [47] 38.7 +2.1

SimCLR [6] 38.4 +1.8
InstDisc [41] 38.0 +1.4
MoCo [14] 38.9 +2.3

CaCo 49.2 +12.6

Table 2. Comparisons with existing unsupervised representation learning methods: For the semantic segmentation over GTA → Cityscapes
adaptation, CaCo performs the best consistently by large margins.

M (the length of categorical dictionary)
Method 50 75 100 125 150
CaCo 48.9 49.1 49.2 49.1 49.1

Table 3. The length of categorical dictionary (parameter M ) affects unsupervised domain adaptation (evaluated over semantic segmentation
on GTA → Cityscapes adaptation).

B.4. Generalization across different learning setups

We studied the scalability of the proposed CaCo from the view of learning setups. Specifically, we evaluated CaCo over
a variety of tasks that involve unlabeled data learning and certain semantic priors such as unsupervised model adaptation,
partial-set domain adaptation and open-set domain adaptation. Experiments (in Tables 4-6) show that CaCo achieve com-
petitive performance consistently across all the tasks.



Unsupervised model adaptation mIoU gain
Baseline [15] 36.6 N.A.

UR [35] 45.1 +8.5
SFDA [23] 45.8 +9.2

CaCo 47.6 +11.0

Table 4. Comparison on unsupervised model adaptation (UMA) over GTA5 → Cityscapes adaptation: For semantic segmentation, CaCo
achieves competitive performance as compared with state-of-the-art UMA methods. (Compared with UDA, UMA dose not use labeled
source data during adaptation.)

Partial-set DA A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean

ResNet-50 [15] 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.3
IWAN [46] 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6
SAN [4] 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.2 50.2 78.7 65.3
ETN [5] 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5
SAFN [43] 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8

CaCo 61.2 83.7 90.5 73.9 75.4 81.5 76.7 61.3 89.4 80.5 66.1 86.9 77.3

Table 5. Comparison on partial-set UDA (PS-UDA) over Office-Home: For image classification, CaCo achieves competitive performance
as compared with state-of-the-art PS-UDA methods. (In PS-UDA setting, source and target domains do not share a completely same label
space.)

Open-set DA A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean

ResNet [15] 36.3 54.8 69.1 33.8 44.4 49.2 36.8 29.2 56.8 51.4 35.1 62.3 46.6
ATI-λ [30] 55.2 52.6 53.5 69.1 63.5 74.1 61.7 64.5 70.7 79.2 72.9 75.8 66.1
OSBP [33] 56.7 51.5 49.2 67.5 65.5 74.0 62.5 64.8 69.3 80.6 74.7 71.5 65.7
OpenMax [2] 56.5 52.9 53.7 69.1 64.8 74.5 64.1 64.0 71.2 80.3 73.0 76.9 66.7
STA [22] 58.1 53.1 54.4 71.6 69.3 81.9 63.4 65.2 74.9 85.0 75.8 80.8 69.5

CaCo 63.5 78.7 83.8 61.1 74.0 79.6 64.2 58.2 82.3 68.8 62.9 81.7 71.6

Table 6. Comparison on open-set UDA (OS-UDA) over Office-Home: For image classification, CaCo achieves competitive performance
as compared with state-of-the-art OS-UDA methods. (In OS-UDA setting, source and target domains do not share a completely same label
space.)

B.5. Category-aware dictionary

What about assigning all keys with the same temperature? In Eq.5 in the submitted manuscript, we assigned dif-
ferent temperatures to different keys as their predicted labels have different uncertainties (labeled source samples also have
corresponding prediction uncertainties even if they are labeled). In this section, we conduct experiments to show how this
adaptive temperature design affects the performance. Table 7 shows that CaCo (with adaptive temperature) outperforms
its uncertainty-independent version (with fixed temperature). The reason is that CoCo (with adaptive temperature) allevi-
ates the negative effects from the wrongly pseudo-labeled keys, i.e., suppressing the effect of keys with high uncertainty
(about the category pseudo labeling). In another word, CaCo encourages to employ well-learnt embeddings (instead of using
under-learnt embeddings) as keys in representation learning.

What about using two individual dictionaries (for source and target data) instead of a single domain-mixed dic-
tionary? In the description of categorical dictionary in the submitted manuscript, the dictionary keys are domain-mixed,
i.e., evenly sampled from source and target domains. In this section, we conduct experiments to show how domain-mixing
design affects the performance. Table 8 shows that CaCo (with domain-mixed dictionary) outperforms its vanilla version
(with two individual dictionaries) clearly. The reason is that CaCo (with domain-mixed dictionary) enables information com-
munication across domains (like in Shufflenet [49]) that helps mitigate inter-domain discrepancy. For instance, with a group



Fixed or Adaptive temperature mIoU gain
Baseline [15] 36.6 N.A.

CaCo (with fixed temperature) 47.9 +11.3
CaCo (with adaptive temperature) 49.2 +12.6

Table 7. Fixed or adaptive temperature in the proposed Category Contrast: CaCo with adaptive temperature clearly outperforms its
uncertainty-independent version with fixed temperature, evaluated over UDA-based semantic segmentation task GTA → Cityscapes.

of domain-mixed keys that contains a “car” key encoded from target domain and C − 1 keys (the rest categories) encoded
from source domain, a target “car” query could be pulled closer to its positive target-domain key and pushed away from its
negative source-domain keys, which makes the learning process more efficient and effective.

Domain-mixed or individual dictionary mIoU gain
Baseline [15] 36.6 N.A.

CaCo-S 46.8 +10.2
CaCo-T 48.3 +11.7

CaCo (with two individual dictionaries) 48.5 +11.9
CaCo (with domain-mixed dictionary) 49.2 +12.6

Table 8. Domain-mixed or individual dictionary: CaCo with domain-mixed dictionary clearly outperforms its vanilla version with two
individual dictionaries, evaluated over the UDA-based semantic segmentation task GTA → Cityscapes.

What about sampling queries from source-domain (i.e., training networks with an extra supervised source-domain
contrastive loss)? As described in Fig. 1 and Eq.5 in the submitted manuscript, CaCo samples queries from target domain
only in contrastive learning of its unlabelled samples. This strategy is intuitive and reasonable as the annotated source-domain
data can be well learnt with supervised losses without bothering with an extra contrastive loss. Nevertheless, [20] shows that
incorporating an extra supervised contrastive loss could further improve the supervised learning of source-domain data. We
thus conduct new experiments to explore whether training networks with an extra source-domain contrastive loss [20] could
further improve domain adaptation. As Table 9 shows, the baseline with a supervised source-domain contrast marginally
outperforms its vanilla version, which indicates that the supervised contrastive learning could improve the generalization of
the baseline model. However, incorporating the supervised source-domain contrast into CaCo slightly degrades the domain
adaptation. We conjecture that further including an extra supervised source-domain contrastive loss may distract the network
from learning target-domain data which leads to the slight degradation.

Sampling queries from source-domain? mIoU gain
Baseline [15] 36.6 N.A.

+supervised source-domain contrast 38.2 +1.6
CaCo 49.2 +12.6

+supervised source-domain contrast 49.0 +12.4

Table 9. Sampling queries from source-domain (i.e., training networks with an extra supervised source-domain contrastive loss [20]) or
not: The baseline with supervised source-domain contrast marginally outperforms its vanilla version, which indicates that the supervised
contrastive learning could improve the generalization of the baseline model. However, incorporating supervised source-domain contrast
into CaCo slightly degrades the domain adaptation. We conjecture that further including an extra source-domain contrastive loss may
distract the networks from learning from target-domain samples which leads to the slight degradation. All experiments are conducted over
the UDA-based semantic segmentation task GTA → Cityscapes.

What about updating the dictionary by memory bank [41] or current mini-batch [6]? In this paper, we use a
momentum encoder to encode the keys and update the dictionary. In this section, we conduct experiments to show how
dictionary-update strategy affects the performance. Table 10 shows that the performance is not sensitive to dictionary-update



strategies. The reason is that CaCo improves domain adaptation largely by reducing domain gaps and enhancing category
discrimination whereas dictionary-update strategy has little effect on these two factors.

Dictionary updating strategies mIoU gain
Baseline [15] 36.6 N.A.

CaCo (end-to-end updating [6]) 49.0 +12.4
CaCo (memory bank updating [41]) 48.9 +12.3
CaCo (momentum updating [14]) 49.2 +12.6

Table 10. Dictionary updating strategies: Different dictionary updating strateties (i.e. end-to-end updating [6], memory bank updating [41],
and momentum updating [14]) have little effect on CaCo’s performance, evaluated over the UDA-based semantic segmentation task GTA
→ Cityscapes.

a = 376.69, b = 43.65, c = 15.65 a = 347.21, b = 48.23, c = 16.92

ADVENT [39] CRST [50]
a = 544.69, b = 43.27, c = 20.12 a = 374.09, b = 45.70, c = 14.76 a = 254.78, b = 50.79, c = 12.86

Baseline [15] FDA [44] CaCo(Ours)
Figure 1. The t-SNE [25] visualization of feature distribution for target images on task GTA → Cityscapes: Each colour represents one
semantic category of image pixels with a digit showing the category center. a, b and c on the top of each graph are intra-category variance,
inter-category distance and cross-domain distance of the corresponding feature distribution. The proposed CaCo greatly outperforms
“Baseline”, “ADVENT” (adversarial training based), “CRST” (self-training based) and “FDA” (image translation based) qualitatively and
quantitatively. Please note that we did not include the source feature distribution for simplicity and clarity.

B.6. Feature distribution analysis

Feature distribution visualization. We provide the t-SNE [25] visualization of feature distribution for target images on
the GTA → Cityscapes task. To illustrate the unique features of the proposed “CaCo”, we compare it with the “Baseline”
and three typical UDA approaches, i.e., “ADVENT” [39] (adversarial training based), “CRST” [50] (self-training based)
and “FDA” [44] (image translation based) as shown in Fig.1. In addition, we evaluate the learnt features by using three
metrics including intra-category variance, inter-category distance, and cross-domain distance which are labelled by a, b, and



c, respectively, as shown at the top of each graph in Fig.1.
It can be observed that the feature distribution of the Baseline model is messy and not category-discriminative (i.e.,

a = 544.69 and b = 43.27) due to the large distribution gaps across domains (i.e., c = 20.12). ADVENT generates
features with less cross-domain discrepancy (i.e., c = 15.65) as it employs adversarial training to reduce domain gaps.
However, adversarial training is category-unaware, which leads to sub-optimal category discrimination (i.e., a = 376.69
and b = 43.65) for visual recognition which requires category-discriminative features. FDA adopts image translation and
generates features (i.e., a = 374.09, b = 45.70 and c = 14.76) in a similar manner to ADVENT. In addition, CRST generates
category-discriminative features (i.e., a = 347.21 and b = 48.23) as it employs category-wise self-training. On the other
hand, self-training is less effective on cross-domain gaps reduction, leading to sub-optimal cross-domain distance (c = 16.92)
for domain adaptation. The proposed CaCo learns category-discriminative yet domain-invariant features (i.e., a = 254.78,
b = 50.79 and c = 12.86) as it employs a category-aware and domain-mixed dictionary for categorical contrastive learning.
The visualization verifies the first and second claims as mentioned in the fifth paragraph of the Introduction.

Category imbalance mitigation. As shown in Fig.1, it can be also observed that the feature distribution generated by the
proposed CaCo is more category-balanced. For example, the features of both dominant and less-dominant categories are well
separated, i.e., category 0− 18. On the contrary, the other four models (i.e., “Baseline”, “ADVENT”, “FDA” and “CRST”)
generate feature distributions that are more category-imbalanced. For example, the features of dominant categories are well
learnt and separated (e.g., category 0-2), but the features of less-dominant categories are poorly learnt and separated (e.g.,
category 5&7, 8&10 in “Baseline”, category 2&5 in “ADVENT”, category 5&7&12, 2&11 in “FDA” and category 5&11&12
in “CRST”).
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