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1. Investigation of Estimation Shift on MNIST
In Figure 2 of the main paper, we show the results of setup

one where the training set S equals to the test set S′. The
experiments are conducted using a learning rate of 0.1 and
an update factor α = 0.9, trained on the 20-layer multi-layer
perceptron (MLP) architecture.

Here, we provide the results under different configura-
tions, including varying the learning rate (Figure 1), varying
the update factor α (Figure 2 and 3), varying the depth of the
network (Figure 4), and further experiments on convolutional
neural networks (Figure 5). We have the similar observations
as the ones shown in Figure 2 of the main paper: 1) there are
significant gaps between the training and test errors in the
first dozens of epochs, and these error gaps between training
and test are mainly caused by the inaccurate estimation of the
population statistics of batch normalization (BN) [5]; 2) the
ESMµ and ESMσ of BN in deeper layers have potentially
higher values during the first dozens of epochs.

Group normalization with different groups. In Figure
4 of the main paper, we show the results using group nor-
malization (GN) [12] with group number g = 4. Here, we
provide results of GN with group numbers g = 1 (Figure 6)
and g = 16 (Figure 7). Note that GN with g = 1 is equiv-
alent to layer normalization (LN) [1]. We have the similar
observations as the ones shown in Figure 4 of the main pa-
per: 1) the gaps of training and test errors of ‘GNBN’ are
significantly reduced in the first 30 epochs; 2) the ESMσ

of BNs in each layer of ‘GNBN’ nearly are the same during
training.

2. More Results on ImageNet Classification
In this section, we provide more results on large-scale

ImageNet classification [10].

Different group number. In Section 5.2.1 of the main pa-
per, we mention that we use GN with group number g = 64

*Corresponding author. E-mail: huangleiAI@buaa.edu.cn

as BFN in the XBNBlock. Here, we compare the results
between GNs with g = 64 and g = 32, under different posi-
tions where a GN is used in an XBNBlock. Figure 8 shows
the results. We observe that all the models with different
group numbers outperform the baseline (BN) significantly.
Besides, There are no remarkable differences in performance
between the models using GN with g = 64 and g = 32.

Robustness to distribution shift. In Figure 8 of the main
paper, we conduct experiments on model robustness to distri-
bution shift. We show the results on ResNet-50 with its first
six blocks being ‘disturbed block’. Here, we provide more
results on ResNet-50 with different blocks being ‘disturbed
block’, and the results are shown in Figure 9. We obtain
similar observations as the ones in Figure 8 of the main paper.
Besides, we observe that BN has significant performance
degeneration, even though only one BN’s population statis-
tics are disturbed (Figure 9 (a)), while XBNBlockGN and
XBNBlockIN have no remarkable performance degenera-
tion in this case (Figure 9 (a)).

Advanced training strategies. In Section 5.2.2 of the
main paper, we conduct experiments using more advanced
training strategies and show the results on ResNet-50 [2].
Here, we provide the results on ResNet-101 [2] and ResNext-
50 [13] (Table 1). We also observe that XBNBlock consis-
tently outperforms the baseline by a remarkable margin.

Towards whitening. We also apply the recently pro-
posed group whitening (GW) [4] as a BFN in our XBN-
Block, referred to as XBNBlockGW . We use the released
code provided in [4]. The results are shown in Table 2.
By applying GW in our design, our XBNBlock outper-
forms the state-of-the-art whitening methods. E.g., our
method ‘XBNBlockGW -D4’ obtains 79.18% top-1 accuracy
on ResNet-101. Note that XBNBlockGW -D4 has only 7%
additional time cost.
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(c) ESMσ of BN in different layers

Figure 1. Experiments with training set S equaling to the test set S′. We follow the same experimental setup as the one in Figure 2 of the
main paper, except that we use a learning rate of 0.05.
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Figure 2. Experiments with training set S equaling to the test set S′. We follow the same experimental setup as the one in Figure 2 of the
main paper, except that we use an update factor of α = 0.1 for the running average in calculate population statistics of BN.

2.1. Experiments on other Architectures

In Section 5.2 of the main paper, we show the results
experimented on ResNet and ResNeXt architectures. Here,
we provide the results on MobileNet-V2 [11] and ShuffleNet-
V2 [7] architectures which are designed for more efficient
computations. We conduct experiments using XBNBlock-
P2 that replace the second BN of the original block of
MobileNet-V2 (Figure 10) and ShuffleNet-V2 (Figure 11)
with a BFN. We again use GN as BFN.

2.1.1 MobileNet-V2

Following the experimental setup shown in the main paper,
we consider two training protocols:

(1) Standard training protocol: We apply stochastic
gradient descent (SGD) using a mini-batch size of 256, mo-
mentum of 0.9 and weight decay of 0.0001. We train over
100 epochs. The initial learning rate is set to 0.1 and divided
by 10 at 30, 60 and 90 epochs.

(2) Advanced training protocol: We train 150 epochs
with cosine learning rate decay, and use a weight decay
of 0.00004, under which the baseline model (MobileNet)
obtains a better performance.

The results are shown in Table 3. We observe that the
proposed XBNBlock consistently improves the performance
of the original MobileNet-V2 architecture.

2.1.2 ShuffleNet-V2

Here, we also consider two training protocols:
(1) Standard training protocol: We apply SGD using a

mini-batch size of 256, momentum of 0.9 and weight decay
of 0.0001. We train over 100 epochs. The initial learning
rate is set to 0.1 and divided by 10 at 30, 60 and 90 epochs.

(2) Advanced training protocol: We train 150 epochs
with cosine learning rate decay, and use a weight decay of
0.00004. We also further use the label smoothing with a
smoothing factor of 0.1. The baseline (ShuffleNet-V2) has a
better performance under this training protocol.

Table 3 show the results of ShuffleNet-V2 with different
model sizes, including the ‘0.5×’, ‘1.0×’ and ‘1.5×’ [7].
We observe that the proposed XBNBlock consistently im-
prove the performance of the original ShuffleNet-V2 archi-
tecture, under different training protocols and model sizes.

3. More Results of Detection and Segmentation
on COCO

In the main paper, we only report the average precision
(AP) for bounding box detection (APbbox) and instance seg-
mentation (APmask) [6], due to space limit. Here, we report
more COCO metrics including the results at different scales
(AP50, AP75, APs, APm and APl) for both bounding box de-
tection and instance segmentation. Table 4 and Table 5 show
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(c) ESMσ of BN in different layers

Figure 3. Experiments with training set S equaling to the test set S′. We follow the same experimental setup as the one in Figure 2 of the
main paper, except that we use an update factor of α = 0.5 for the running average in calculate population statistics of BN.
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Figure 4. Experiments with training set S equaling to the test set S′. We follow the same experimental setup as the one in Figure 2 of the
main paper, except that we train a 10-layer MLP.

the results using ResNet-50 and ResNeXt-101 respectively
as the backbone.
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Figure 5. Experiments with training set S equaling to the test set S′. We train a 14-layer convolutional neural network (CNN) for MNIST
classification. S and S′ are the original test set of MNIST with 10,000 samples. We use full-batch gradient descent to train 120 epochs
(iterations) with a learning rate of 0.1. The estimated population statistics of BN are calculated by the commonly used running average with
update factor α = 0.9.

ResNet-101 ResNext-50
Training strategies Baseline (BN) XBNBlockGN Baseline (BN) XBNBlockGN
label smooth (LS) 78.25 78.85 77.83 78.46

MixUp 78.67 79.14 78.20 78.73
cosine learning (COS) 78.51 78.91 77.91 78.31
LS + MixUP + COS 79.10 79.41 78.84 79.27

Table 1. Top-1 accuracy (%) on ResNet-101 and ResNeXt-50 using advanced training strategies.
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Figure 6. Estimation shift experiments on a network with BN and
GN mixed (referred to as ‘GNBN’). We follow the same experi-
mental setup as the one in Figure 4 of the main paper, except that
we use GN with a group number of 1.
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Figure 7. Estimation shift experiments on a network with BN and
GN mixed (referred to as ‘GNBN’). We follow the same experi-
mental setup as the one in Figure 4 of the main paper, except that
we use GN with a group number of 16.
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Architectures
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Figure 8. Comparison of the results (top-1 validation accuracy)
between GNs with g = 64 and g = 32, under different posi-
tions where a GN is used in an XBNBlock. ‘XBNBlock-P1’,
‘XBNBlock-P2’ and ‘XBNBlock-P3’ indicate that the first, second
and third BN in the bottleneck are replaced with GN, respectively.
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Figure 9. Top-1 validation accuracy with different noise magnitude imposed on the estimated population statistics. The results are averaged
over 5 random seeds. We refer to a bottleneck/XBNBlock as ‘disturbed block’ if its first BN uses {µ̂δ, σ̂2

δ} for normalization during
inference. (a) the first block of ResNet-50 is ‘disturbed block’; (b) the first 6 blocks of ResNet-50 are ‘disturbed block’; (c) the first 13rd
blocks of ResNet-50 are ‘disturbed block’.

Method ResNet-50 ResNet-101
Baseline (BN) [5] 76.29 77.65

BW [3] 77.21 78.27
SW [9] 77.93 79.13

GW [4]/XBNBlockGW 77.72 78.71
XBNBlockGW -D2 (ours) 77.89 79.12
XBNBlockGW -D4 (ours) 77.56 79.18

Table 2. Comparison of top-1 validation accuracy (%) between
methods with whitening module. We compare our method to batch
whitening (BW) [3], switchable whitening (SW) [9] and group
whitening (GW) [4]. Note that the ResNet-50 (ResNet-101) with
GW used in paper [4] is equivalent to the ResNet-50 (ResNet-101)
with our XBNBlockGW used.

(a) Inverted residual block (b) XBNBlock-P2

Figure 10. Inverted residual block of MobileNet-V2 vs our
XBNBlock-P2 that replaces its second BN with a BFN. Note that
‘DWconv’ indicates the depth-wise convolutions.

(a) Basic block of ShuffleNet-V2 (b) XBNBlock-P2

Figure 11. Basic block of ShuffleNet-V2 vs our XBNBlock-P2 that
replaces its second BN with a BFN.

Method Standard training Advanced training
Baseline (BN) 66.59 70.83
XBNBlockGN 70.81 72.69

Table 3. Top-1 accuracy (%) on MobileNet-V2 for ImageNet clas-
sification.
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Figure 12. Top-1 accuracy (%) on ShuffleNet-V2 for ImageNet classification.

2fc head box
Method APbbox APbbox

50 APbbox
75 APbbox

s APbbox
m APbbox

l APmask APmask
50 APmask

75 APmask
s APmask

m APmask
l

BN† 37.40 59.01 40.43 21.87 40.91 48.17 34.01 55.72 35.9 15.56 37.05 49.86
GN 37.55 59.36 40.87 21.99 40.49 48.43 34.06 55.97 35.76 15.58 36.86 49.61

XBNBlockGN 38.19 60.09 41.65 22.48 41.50 48.73 34.57 56.79 36.58 16.14 37.49 50.58

4conv1fc head box
Method APbbox APbbox

50 APbbox
75 APbbox

s APbbox
m APbbox

l APmask APmask
50 APmask

75 APmask
s APmask

m APmask
l

BN† 37.51 58.26 40.65 21.88 40.72 48.00 33.68 54.90 35.62 15.44 36.60 48.88
GN 39.02 59.87 42.71 23.29 42.14 50.48 34.37 56.56 36.47 15.86 37.16 50.17

XBNBlockGN 39.57 60.64 42.93 24.15 42.32 51.12 34.86 57.06 36.95 17.12 37.41 50.65

Table 4. Detection and segmentation results (%) on COCO using the Mask R-CNN framework implemented in [8]. We use ResNet-50 as the
backbone, combined with FPN. All models are trained by 1x lr scheduling (90k iterations), with a batch size of 16 on eight GPUs.

2fc head box
Method APbbox APbbox

50 APbbox
75 APbbox

s APbbox
m APbbox

l APmask APmask
50 APmask

75 APmask
s APmask

m APmask
l

BN† 42.13 63.98 46.35 24.94 45.98 54.87 37.78 60.37 40.34 17.74 40.69 55.43
GN 41.47 63.54 44.76 25.36 45.33 53.20 37.17 60.23 39.31 17.92 40.24 54.12

XBNBlockGN 42.69 64.98 46.20 25.39 46.72 55.03 38.00 61.03 40.39 17.99 40.95 55.52

4conv1fc head box
Method APbbox APbbox

50 APbbox
75 APbbox

s APbbox
m APbbox

l APmask APmask
50 APmask

75 APmask
s APmask

m APmask
l

BN† 42.18 63.22 46.00 25.01 45.60 54.90 37.53 60.18 39.99 17.80 40.49 55.04
GN 42.24 63.00 46.19 25.27 45.76 54.94 37.53 59.82 39.96 18.00 40.42 54.52

XBNBlockGN 43.43 64.56 47.51 25.89 46.65 56.65 38.68 61.62 41.34 18.52 41.60 56.68

Table 5. Detection and segmentation results (%) on COCO using the Mask R-CNN framework and using ResNeXt-101 as the backbone,
combined with FPN. All models are trained by 1x lr scheduling (180k iterations), with a batch size of 8 on eight GPUs.


	. Investigation of Estimation Shift on MNIST
	. More Results on ImageNet Classification
	. Experiments on other Architectures
	MobileNet-V2
	ShuffleNet-V2


	. More Results of Detection and Segmentation on COCO

