
Exposure Normalization and Compensation for Multiple Exposure Correction

Supplementary Material

This supplementary document is organized as follows:

Sec. 1 provides the details of the Table 1 in the main body.

Sec. 2 provides numerical results of applying our method on another backbone.

Sec. 3 provides the results of evaluating different methods by NIQE metric.

Sec. 4 provides numerical results of more comparison methods.

Sec. 5 provides numerical results of comparing the ENC module with other plug-and-play modules.

Sec. 6 provides more ablation studies of applying the parameter regularization strategy.

Sec. 7 provides the derivation process of the parameter regularization strategy.

Sec. 8 provides a discussion of the parameter regularization strategy with the EWC and more related results.

Sec. 9 provides more details about the implementation.

Sec. 10 provides more explanation of our proposed method.

Sec. 11 provides more visualization results of feature maps in the ENC module.

Sec. 12 provides more visualization results of exposure correction.

1. The details of Table 1 in the main body

Since the ME dataset contains 5 levels of exposure, presenting all of their results in the main body is difficult due to the

limitation of the page length. Here, we present the details of Table 1 in the main body in Table 1 and Table 2, respectively.

In particular, the exposure level 1 to 5 represent the exposure from underexposure to overexposure. More descriptions of this

dataset are provided in [1].

We regard the results of Level 1 and Level 2 in Table 1 as the underexposure results of the ME dataset in the main body,

and the results of Level3, Level 4 and Level 5 are regarded as the overexposure results. Similarly, the results of Level 1 and

Level 2 in Table 2 are regarded as the underexposure results of the ME-v2 dataset in the main body, while the results of Level

4 and Level 5 are regarded as the overexposure results. Besides, we fix a typo in the main body, the PSNR of MSEC method

is 24.39dB instead of 24.29dB that reported in the main body, which dose not affect the illustration of demonstrating our

method.

Method Level 1 Level 2 Level 3 Level 4 Level 5 Average
Parameters

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CLAHE 16.84 0.6319 16.70 0.6103 13.18 0.5756 16.01 0.5933 14.16 0.5837 15.38 0.5990 -

RetinexNet 13.21 0.6317 11.05 0.6101 10.75 0.6038 10.45 0.5964 10.01 0.5857 11.14 0.6048 1.70M

Zero-DCE 14.99 0.5946 14.11 0.5828 12.15 0.5418 10.06 0.5171 8.99 0.4837 12.06 0.5441 0.33M

MSEC 20.50 0.8105 20.53 0.8152 20.35 0.8210 19.78 0.8171 19.23 0.8086 20.08 0.8145 7.04M

DRBN 19.61 0.8243 19.86 0.8336 19.44 0.8355 19.45 0.8338 19.23 0.8271 19.52 0.8309 0.53M

DRBN-L 19.81 0.8291 19.87 0.8347 19.27 0.8344 19.64 0.8381 19.60 0.8339 19.64 0.8340 0.67M

I-DRBN(Ours) 21.72 0.8413 22.38 0.8538 22.50 0.8628 22.38 0.8542 21.63 0.8457 22.12 0.8516 0.54M

I-DRBN-4(Ours) 22.57 0.8508 22.87 0.8579 22.70 0.8603 22.29 0.8543 21.34 0.8418 22.35 0.8530 0.58M

SID 19.28 0.8072 19.46 0.8133 18.92 0.8103 18.88 0.8064 18.68 0.7999 19.04 0.8074 7.40M

SID-L 19.25 0.8078 19.38 0.8119 19.04 0.8100 19.09 0.8093 18.72 0.8026 19.10 0.8083 11.56M

I-SID(Ours) 22.39 0.8376 22.79 0.8470 22.70 0.8551 22.44 0.8522 21.94 0.8484 22.45 0.8481 7.45M

Table 1. Quantitative results of methods on ME Dataset in terms of PSNR and SSIM.
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Method Level 1 Level 2 Level 4 Level 5 Average
Parameters

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CLAHE 18.13 0.8469 19.98 0.8647 16.99 0.7843 14.53 0.7440 17.41 0.8100 -

RetinexNet 13.83 0.7237 14.24 0.7471 16.56 0.7896 16.08 0.7666 15.18 0.7568 1.70M

Zero-DCE 16.32 0.7934 15.57 0.7889 10.49 0.7037 9.30 0.6637 12.92 0.7374 0.33M

MSEC 22.28 0.9010 26.67 0.9101 22.58 0.9118 26.01 0.9187 24.39 0.9104 7.04M

DRBN 25.40 0.9169 22.80 0.9143 22.52 0.9013 23.78 0.9096 23.63 0.9105 0.53M

DRBN-L 25.34 0.9170 23.35 0.9166 22.29 0.9025 24.39 0.9141 23.84 0.9126 0.67M

I-DRBN(Ours) 26.01 0.9119 24.63 0.9080 28.07 0.9345 25.38 0.9328 26.02 0.9218 0.54M

I-DRBN-4(Ours) 27.70 0.9243 26.92 0.9284 26.95 0.9234 26.51 0.9316 27.02 0.9270 0.58M

SID 24.80 0.9084 23.27 0.9060 21.08 0.8633 21.12 0.8705 22.57 0.8871 7.40M

SID-L 23.53 0.8979 22.61 0.8953 22.25 0.8704 22.25 0.8842 22.66 0.8870 11.56M

I-SID(Ours) 26.23 0.9145 25.94 0.9121 26.02 0.9154 27.21 0.9177 26.35 0.9149 7.45M

Table 2. Quantitative results of methods on ME-v2 Dataset in terms of PSNR and SSIM.

2. Applying our method on another backbone

Since our method can be plugged into existing backbone, we apply our method on MIRNet [13], which is a network

designed for various kinds of image restoration tasks. Since its original model is too large, we reduce its channel dimension

for fast training. We conduct experiment on Task-mix dataset for fast evaluation. The numerical results in terms of PSNR are

shown in Table 3, with the employ of our method, the performance has improved remarkably, demonstrating the effectiveness

of our method.

Method LOL SICE OVER FIVEK Average

MIRNet 20.72 19.75 23.86 21.45

I-MIRNet (Ours) 21.44 20.48 23.91 21.95

Table 3. Quantitative results of applying our method on MIRNet on Task-mix dataset.

3. Evaluating different methods by NIQE metric

We further evaluate different methods by NIQE metric on SICE dataset. As shown in Table 4, our method can improve the

performance on niqe metric a little, but it can boost the performance of PSNR and SSIM significantly as have been shown in

the main body, demonstrating the robustness of our method.

Method Input HE CLAHE LIME Zero-DCE RetinexNet MSEC SID DRBN I-SID I-DRBN-4 GT

NIQE 4.12 3.62 3.80 4.53 3.70 3.85 5.06 3.40 3.32 3.34 3.33 3.2145

Table 4. NIQE evaluation of different methods on the SICE dataset. We average the underexposure and overexposure results in this table.

4. The quantitative comparison of more methods

Due to the limitation of the page length, we present more numerical results of other baseline methods on ME dataset refer

to [1]. Besides the methods we have compared in the main body, other methods include DPED [7], DeepUPE [11], LIME [6],

DPE [3], WVM [5], HQEC [14] and HDR CNN [4]. As shown in Table 5, since our proposed method outperforms MSEC

[1] remarkably, we also get better results than all of the baseline methods, which fully demonstrate the superiority of our

method.

Method CLAHE WVM LIME HDR CNN DPE DPED HQEC RetinexNet DeepUPE Zero-DCE I-DRBN-4

PSNR 15.38 15.12 11.52 16.43 18.02 17.74 13.91 11.14 13.69 12.06 22.35

SSIM 0.599 0.678 0.607 0.681 0.683 0.696 0.656 0.605 0.632 0.544 0.853

Table 5. More quantitative results of other baseline methods on the ME dataset.



5. Comparing the ENC module with other plug-and-play modules

To the best of our knowledge, this is the first plug-and-play module for existing exposure correction frameworks. Fol-

lowing the experimental setting in similar works in other tasks, we compared our method with other exposure correction

approaches, and we additionally increased the channel number for comparison. We adopt several plug-and-play modules that

have been widely used in other vision tasks for comparison, including Convolutional Block Attention Module (CBAM) [12],

Atrous Spatial Pyramid Pooling (ASPP) module [2] and Selective Kernel Convolution (SKC) module [10]. The results in

Table 6 show that our ENC module is more effective than other ones in multiple exposure correction.

Metric DRBN DRBN-CBAM DRBN-ASPP DRBN-SKC DRBN-ENC

PSNR (dB) 17.65 19.57 19.93 19.64 20.49

#Param (M) 0.53 0.57 0.58 0.59 0.58

Table 6. Results of incorporating other modules on SICE dataset.

6. More ablation studies of applying our Parameter regularization strategy

We provide more numerical results of applying the parameter regularization strategy on ME-v2 dataset. For our improved

DRBN network, since it has the lowest PSNR in the Level 5 exposure subset, we regard it as the worst-performed exposure for

our DRBN network. While for our improved SID network, it has the lowest PSNR in the Level 1 exposure subset, therefore

we regard it as the worst-performed exposure for our SID network.

Method Level 1 Level 2 Level 4 Level 5 Average

DRBN-ENC 27.84/0.9268 26.91/0.9242 26.93/0.9242 26.24/0.9298 26.98/0.9277

DRBN-ENC-4-SEQ 10.77/0.4818 11.61/0.5609 22.36/0.9242 32.69/0.9492 19.32/0.7290

I-ENC-4 (Ours) 27.70/0.9243 26.92/0.9284 26.95/0.9234 26.51/0.9316 27.02/0.9270

SID-ENC 25.89/0.9113 25.97/0.9136 26.04/0.9170 27.25/0.9183 26.29/0.9151

SID-ENC-SEQ 32.32/0.9393 22.33/0.9277 9.33/0.6606 8.05/0.5958 18.00/0.7809

I-SID (Ours) 26.23/0.9145 25.94/0.9121 26.02/0.9154 27.21/0.9177 26.35/0.9149

Table 7. Ablation studies for the parameter regularization strategy on ME-v2 dataset.

The results are shown in Table 7, after applying the Parameter regularization strategy, we can see that the performance of

worst-performed exposure has improved with little performance drop of other exposures.

7. The derivation process and more details of the parameter regularization strategy

Due to the limitation of the page length, we simplify the derivation process of the parameter regularization strategy in the

main body. Here, we present the details of derivation process and more details of the parameter regularization strategy.

Firstly, to simplify, we denote training on various exposures as Task 0 and fine-tuning on the worst-performed exposure

as Task 1. Suppose the various exposures and the worst-performed exposure are represented as x0 and x1, respectively.

The parameters of the network trained on Task 0 are denoted by θ0 = θ0
1
, ..., θ0m while that of Task 1 are denoted by

θ1 = θ1
1
, ..., θ1m. After training the network on Task 1, the resulting degradation on the previous Task 0 can be evaluated by:

∆f = f(x0; θ1)− f(x0; θ0), (1)

where f denotes the network. Taking the element of parameter θ0k (k-th depth) for example, the change of parameter θ0k is

denoted as δθ0k when model is trained on the new Task 1, the mathematical form is δθ0k = θ1k − θ0k. Then, we take the Taylor

expansion of f(x0; θ1k) at point θ0k :
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And, we inject the Eq. 2 into Eq. 1, and acquire the weight importance as:
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To maintain the performance of previous Task 0, we need to minimize the Eq. 1. From this motivation, when training the

model on Task 1, we add a regularization term based on conventional loss to keep the knowledge of Task 0. In summary, the

total loss on Task 1 is a composite loss, which is of the form:
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Note that the Eq. 5 is another form of Eq. (11) in the main body, which describes the implementation of the parameter

regularization strategy more concretely.

The pseudo code of the paramter regularization strategy method is summarized in Algorithm 1.

Algorithm 1 Parameter regularization strategy for fine-tuning.

Input: Training phase task T0, fine-tuning phase task T1; conventional training loss L

Output: Final trained model for correcting all exposures.

for Task T0 do

Training Task T0 using conventional loss L

if the epoch performs the best then

calculating the parameter importance with Eq.(4)

end if

end for

for Task T1 do

update the loss L with Eq. (5) as composite loss

train the network with the composite loss

end for

8. The discussion of the parameter regularization strategy with the EWC and more related results

The proposed parameter regularization strategy focuses on addressing the imbalanced performance across exposures rather

than designing a new algorithm. Our strategy is inspired by Elastic Weight Consolidation (EWC) [8], which enables a single

model to maintain the performance of previous tasks when being trained on a new task. We initially employed it to fine-

tune the worst-performed exposure, yet its first-order scheme is inaccurate to calculate the parameter importance, resulting

in ineffective performance (see the second line in Table 8). Thus, our method extends EWC to the first and second-order

scheme to strengthen the calculation of the parameter importance, achieving better performance.

Besides, we include the simple re-weighting approach for comparison, which increases the weight coefficient of the worst-

performed samples. Our strategy can improve the performance of the worst-performed exposure and keep the performance

of other exposures, thus improving the overall performance. In contrast, the re-weighting approach lacks the constraint

of keeping the performance for other exposures. Table 8 shows that the average results of the re-weighting approach are

comparable with that of baseline, while our method surpasses it and baseline on average.

9. More details about the implementation

We present more details about the implementation in this section.

About the features of normal exposures. In the training phase, we first train the network on the multiple exposure

datasets for a few epochs, and denote the network as Net1. Then the normal exposures are inference by Net1, the features

of the exposure normalization part Fnorm
n and the ENC’s output Fnorm

f are utilized to supervise the multiple exposure’s

features on another same structure network Net2. In particular, We implement the supervise manner by the normalization

distilling loss Lnd and the exposure distilling loss Led.



Method Under Over Average

DRBN-ENC (Baseline) 21.89 19.09 20.49

DRBN-ENC-EWC 21.21 19.64 20.43

DRBN-ENC-Weight-1.5 21.52 19.41 20.47

DRBN-ENC-Weight-3.0 21.30 19.74 20.52

DRBN-ENC-Weight-6.0 20.81 19.92 20.37

I-DRBN-4 (Ours) 21.77 19.57 20.67

Table 8. PSNR results of the parameter regularization strategy related results of DRBN-based methods on the SICE dataset.

About the coefficients of the losses. The losses in our framework consist of three parts: the conventional loss of baseline

network, the normalization distilling loss Lnd and the exposure distilling loss Led. Since the conventional loss of different

baseline networks is different, to balance the losses in the framework, we set the coefficients of Lnd and Led to ensure their

values occupy 0.1 of the total loss, respectively. Besides, for the network with several ENCs, we only apply Lnd and Led on

the first ENC to improve the performance.

10. More explanation of the proposed method

In the main body, we describe our method improves the performance by narrowing the gap of different exposures. Here,

we further explain how our method works. Specifically, according to the Retinex theory [9], one image I can be decomposed

as:

I = R · S, (6)

denoting that an image can be formed via a pixel-wise multiplication of R which denotes the reflectance image, and S which

is the illumination map. Therefore, multiple exposure correction can be regarded as the recovery of R or S. Since ENC can

narrow the gap of different exposure representations, it is analogous to learning R that is also exposure-invariant, while the

following part in the network implicitly recover S. In this way, the problem of multiple exposure correction is decomposed

to recover R and S, thus relieving the difficulty of multiple exposure correction.

11. More visualization results of feature maps in the ENC module

In this section, we present more visualization results of feature maps in the ENC module, demonstrating the effectiveness

of the exposure normalization part, normalization distilling loss and exposure distilling loss, respectively.

(a) Underexposure Image (b) ENC’s input of (a) (c) ENC’s Fn of (a) (d) ENC’s F̂n of (a) (e) ENC’s output of (a) (f) Errors of ENC’s input

(g) Overexposure Image (h) ENC’s input of (g) (i) ENC’s Fn of (g) (j) ENC’s F̂n of (g) (k) ENC’s output of (g) (l) Errors of ENC’s output

Figure 1. Feature visualization of different components in ENC on samples from SICE dataset.

Fig. 1 and Fig. 2 present two examples of different components in the ENC module. As can be seen, the ENC’s input

features F from underexposure and overexposure differ greatly shown in (b) and (h). As shown in (c) and (i) as well as

(d) and (j), after being processed by the exposure normalization part, input features are mapped to the exposure invariant

space and their discrepancies are progressively reduced. With ENC, the gap of representations between underexposure and

overexposure is obviously narrowed as illustrated in (e) and (k) as well as (f) and (l).



(a) Underexposure Image (b) ENC’s input of (a) (c) ENC’s Fn of (a) (d) ENC’s F̂n of (a) (e) ENC’s output of (a) (f) Errors of ENC’s input

(g) Overexposure Image (h) ENC’s input of (g) (i) ENC’s Fn of (g) (j) ENC’s F̂n of (g) (k) ENC’s output of (g) (l) Errors of ENC’s output

Figure 2. Feature visualization of different components in ENC on samples from the SICE dataset.

(a) Errors of ENC’s input (b) Without Led (c) With Led (d) Errors of ENC’s input (e) Without Led (f) With Led

Figure 3. The visualization of the ENC’s input and output errors between underexposure and overexposure on samples from the SICE

dataset.

Fig. 3 presents two examples of ENC’s output features errors. Compare (b) and (c) with (a), as well as (e) and (f) with (d),

we can see that ENC can narrow the gap of different exposures significantly, which further demonstrates the effectiveness of

the ENC module. While comparing (b) with (c) as well as (d) with (f), it can be seen that with the employing of exposure

distilling loss, the errors of ENC’s output are further reduced, demonstrating the effectiveness of using exposure distilling

loss.

12. More visualization results of exposure correction

Due to the limitation of the page length, in this section, we present more visualization results of different methods on ME

dataset, ME-v2 dataset, SICE dataset and Brighten dataset, respectively.

In particular, Fig. 4 and Fig. 5 present the visualization results on the ME dataset, and we choose the exposure subsets

of Level 1 and Level 5 as the underexposure and overexposure, respectively. Fig. 6 presents the visualization results on the

ME-v2 dataset. Fig. 7 and Fig. 8 present the visualization results on the SICE dataset. Fig. 9 presents the visualization

results on the Brighten dataset, and the model is trained on Task-mix dataset, which demonstrates the generalization ability

of our proposed method.
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(a) Underexposure Input (b) CLAHE (c) MSEC (d) RetinexNet

(e) Zero-DCE (f) DRBN (g) I-DRBN-4 (Ours) (h) Ground Truth

(a) Underexposure Input (b) CLAHE (c) MSEC (d) RetinexNet

(e) Zero-DCE (f) SID (g) I-SID (Ours) (h) Ground Truth

Figure 4. Visualization results of correcting underexposure images from the ME dataset. Please zoom in for better visualization.



(a) Overexposure Input (b) CLAHE (c) MSEC (d) RetinexNet

(e) Zero-DCE (f) DRBN (g) I-DRBN-4 (Ours) (h) Ground Truth

(a) Overexposure Input (b) CLAHE (c) MSEC (d) RetinexNet

(e) Zero-DCE (f) SID (g) I-SID (Ours) (h) Ground Truth

Figure 5. Visualization results of correcting overexposure images from the ME dataset. Please zoom in for better visualization.



(a) Underexposure Input (b) CLAHE (c) MSEC (d) DRBN

(e) Zero-DCE (f) SID (g) I-SID (Ours) (h) Ground Truth

(a) Overexposure Input (b) CLAHE (c) MSEC (d) DRBN

(e) Zero-DCE (f) SID (g) I-DRBN-4 (Ours) (h) Ground Truth

Figure 6. Visualization results of correcting underexposure and overexposure images from the ME-v2 dataset. Please zoom in for better

visualization.



(a) Underexposure Input (b) CLAHE (c) MSEC (d) RetinexNet

(e) Zero-DCE (f) DRBN (g) I-DRBN-4 (Ours) (h) Ground Truth

(a) Underexposure Input (b) CLAHE (c) MSEC (d) RetinexNet

(e) Zero-DCE (f) SID (g) I-SID (Ours) (h) Ground Truth

Figure 7. Visualization results of correcting underexposure images from the SICE dataset. Please zoom in for better visualization.



(a) Overexposure Input (b) CLAHE (c) MSEC (d) RetinexNet

(e) Zero-DCE (f) SID (g) I-SID (Ours) (h) Ground Truth

(a) Overexposure Input (b) CLAHE (c) MSEC (d) RetinexNet

(e) Zero-DCE (f) DRBN (g) I-DRBN-4 (Ours) (h) Ground Truth

Figure 8. Visualization results of correcting overexposure images from the SICE dataset. Please zoom in for better visualization.



(a) Input (b) DRBN (c) I-DRBN-4 (d) GT

(e) Input (f) SID (g) I-SID (h) GT

Figure 9. Visualization results on the Brighten dataset. Please zoom in for better visualization.
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