# HDR-NeRF: High Dynamic Range Neural Radiance Fields (Supplementary Material)

Xin Huang<sup>1</sup><sup>\*</sup>, Qi Zhang<sup>2</sup>, Ying Feng<sup>2</sup>, Hongdong Li<sup>3</sup>, Xuan Wang<sup>2</sup>, Qing Wang<sup>1</sup>

<sup>1</sup> School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China <sup>2</sup> Tencent AI Lab <sup>3</sup> Australian National University

xinhuang@mail.nwpu.edu.cn {nwpuqzhang, yfeng.von, xwang.cv}@gmail.com HONGDONG.LI@anu.edu.au qwang@nwpu.edu.cn

#### **1. Overview**

The supplementary material shows the additional implementation details of our method, baselines, and our collected HDR dataset. Additional results are also presented to further demonstrate the superior performance of our method. We **strongly** encourage the reader to see our video supplementary, in which we present our results on the test scenes and comparisons with baselines.

# 2. Additional Implementation Details

Our code is built upon the PyTorch implementation of NeRF (https://github.com/yenchenlin/nerf-pytorch). During the training and testing, the rays are mapped from camera space to the normalized device coordinate (NDC) space [6]. The inference code and one model are provided in our supplementary materials.

To evaluate our estimated CRFs on synthetic scenes, we build a simple global tone-mapping function based on the classical Reinhard tone-mapping [7]. Using this function, the HDR views rendered by Blender are tone-mapped into LDR views. We then take the LDR views as our inputs. The simple tone-mapping function is defined as:

$$M(E) = \left(\frac{E}{E+1}\right)^{\frac{1}{2\cdot 2}},$$
 (1)

where E is the HDR pixel value. To generate LDR views with different exposure, we use the *exposure value* EV to scale the HDR pixel value E (*i.e.*  $2^{EV}E$ ). We introduce the exposure value EV into Eq. (1):

$$M(E, EV) = \left(\frac{2^{EV}E}{2^{EV}E + 1}\right)^{\frac{1}{2\cdot 2}},$$
 (2)

where  $2^{EV}$  is also can be considered as the exposure time in our paper, that's  $\Delta t = 2^{EV}$ .

### **3.** Baseline Methods Implementation Details

The import parameters of baseline methods, such as number of samples per ray, position encoding, and batch size, are all set as same as these of us for a fair comparison. All the models are trained with Adam about 200,000 iterations.

**NeRF**: We use the PyTorch implementation of NeRF code open-source at https://github.com/yenchenlin/nerf-pytorch. **NeRF-W**: The code of NeRF-W is provided at https://github.com/kwea123/nerf\_pl/tree/nerfw, which is an unofficial implementation of NeRF-W using PyTorch (PyTorch-lightning).

**NeRF-GT**: The NeRF-GT is a version of NeRF that is directly trained from LDR views with consistent exposures or HDR views, which can be considered as the upper bound of our method. When we train the NeRF model from HDR views, the predicted HDR pixel values are tone-mapped into LDR pixel values and then compared to the tone-mapped ground truth. However, we find that it is difficult to ensure all the areas of a scene are encoded well by NeRF model, due to the high dynamic range of the scenes, even though we use the tone-mapped predicted color to calculate the loss.

#### 4. HDR Dataset Details

Since no dataset is appropriate for the task of novel HDR views synthesis, we collect a new dataset for the evaluation of our method. Most 3D models used in our dataset are provided at https://sketchfab.com/feed. All the licenses of 3D models will be attached, when we release our dataset. The HDR views for each scene are rendered with Blender's Cycles path-tracer [1]. For real-world scenes, the LDR views with different exposures are captured by a Nikon D90 camera. We set the ISO gain to 200 and aperture to f/6.7. We calibrate a set of LDR images using an open-source software package COLMAP [8]. The calibration setting of COLMAP follows the one of LLFF [5]. We also capture 10

<sup>\*</sup>Work done during an internship at Tencent AI Lab.



Figure 1. The comparisons with HDR imaging + vanilla NeRF. All the HDR images are tone-mapped with same hyperparameters.

images with different exposures for each scene to calibrate the CRF of the Nikon D90 camera. The CRFs are calibrated with the classical method by Debevec and Malik [3].

#### **5. Additional Results**

The additional quantitative comparisons with baseline methods on the other synthetic scenes are shown in Tab. 1. Table 3 includes a breakdown of the quantitative results on real scenes presented in the main paper into per-scene metrics. The quantitative results further validate that our method outperforms the baseline methods. Figures 2, 3 and 4 show the qualitative results of our method and baselines. It can be seen that our method can accurately control the exposure of rendered LDR views compared NeRF-W, and the results by our method are reasonable close to those of NeRF-GT (the upper bound). On the other hand, our method can better reconstruct the small textures on rendering HDR views, as shown in Fig. 4. Finally, all the CRFs estimated by our method are exhibited in Fig. 5, which demonstrates that our method correctly models the tonemapping operation of the camera. We have also tried to concatenate the  $\ln e$  and  $\ln \Delta t$  then feed them into the tonemapper. Our method produces similar LDR and HDR results (PSNR: ±0.1, SSIM:±0.02, LPIPS:±0.01).

We have tried to reconstruct HDR views using an HDR imaging method [9] then train vanilla NeRF, where LDR views  $(\{t_1, t_3, t_5\})$  with small disparity are used to reconstruct HDR views. Some results reconstructed by the image-wise HDR imaging method are view inconsistent (Fig. 1 (a)) since the radiance scale of each view is different, which leads NeRF or IBR to render the novel views with artifacts (Fig. 1 (b)). HDR imaging + vanilla NeRF is straightforward. The HDR views captured by off-the-shelf cameras are also view-dependent and the radiance scales vary with the poses. Therefore, we propose a novel method for recovering radiance fields from LDR views. Compared with HDR imaging + vanilla NeRF, our method is an endto-end framework with fewer inputs and better performance. The auto-exposure scenes can also be handled by modeling more camera settings, such as ISO and aperture. Our method can recover the radiance field and render novel HDR views from an auto-exposure video. Moreover, the exposure can also be learned, just like appearance vectors

#### in NeRF-W.

## References

- [1] Blender. https://www.blender.org/.
- [2] Photomatix Pro 6. https://www.hdrsoft.com/.
- [3] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from photographs. In *SIGGRAPH*, page 369–378, 1997.
- [4] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duckworth. NeRF in the wild: Neural radiance fields for unconstrained photo collections. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 7210–7219, 2021.
- [5] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. *ACM Trans. Graph.*, 38(4):1–14, 2019.
- [6] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In *Eur. Conf. Comput. Vis.*, pages 405–421. Springer, 2020.
- [7] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photographic tone reproduction for digital images. In *SIGGRAPH*, pages 267–276, 2002.
- [8] Johannes L Schonberger and Jan-Michael Frahm. Structurefrom-motion revisited. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 4104–4113, 2016.
- [9] Shangzhe Wu, Jiarui Xu, Yu-Wing Tai, and Chi-Keung Tang. Deep high dynamic range imaging with large foreground motions. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 117–132, 2018.

Table 1. Quantitative comparisons with baseline methods on four synthetic scenes. LDR-OE denotes the average LDR results with exposure  $t_1$ ,  $t_3$ , and  $t_5$ . LDR-NE denotes the average LDR results with exposure  $t_2$ , and  $t_4$ . HDR denotes the HDR results. We color code each column as best and second best.

|                          |        | Diningroom |       |        | Sponza        |       |        | В             | athroom |        | Desk          |       |        |
|--------------------------|--------|------------|-------|--------|---------------|-------|--------|---------------|---------|--------|---------------|-------|--------|
|                          |        | PSNR↑      | SSIM↑ | LPIPS↓ | <b>PSNR</b> ↑ | SSIM↑ | LPIPS↓ | <b>PSNR</b> ↑ | SSIM↑   | LPIPS↓ | <b>PSNR</b> ↑ | SSIM↑ | LPIPS↓ |
|                          | LDR-OE | 12.50      | 0.378 | 0.600  | 16.39         | 0.664 | 0.219  | 14.59         | 0.429   | 0.424  | 15.29         | 0.645 | 0.249  |
| NeRF [6]                 | LDR-NE | _          |       | _      | _             |       | _      | _             |         | _      | _             | _     |        |
|                          | HDR    | —          | —     | —      | _             | _     | —      |               | —       | —      |               | _     |        |
| NeRF-W <sup>1</sup> [4]  | LDR-OE | 32.25      | 0.979 | 0.016  | 24.50         | 0.908 | 0.037  | 29.64         | 0.900   | 0.055  | 30.21         | 0.958 | 0.030  |
|                          | LDR-NE | 32.53      | 0.972 | 0.019  | 24.32         | 0.904 | 0.042  | 26.98         | 0.881   | 0.066  | 29.60         | 0.950 | 0.034  |
|                          | HDR    | _          | _     | _      | _             | _     | _      | _             | _       | —      | _             | _     | _      |
|                          | LDR-OE | 41.23      | 0.986 | 0.010  | 34.49         | 0.958 | 0.034  | 36.26         | 0.949   | 0.037  | 37.84         | 0.972 | 0.023  |
| Ours                     | LDR-NE | 37.99      | 0.979 | 0.013  | 33.41         | 0.950 | 0.038  | 33.44         | 0.926   | 0.046  | 35.26         | 0.960 | 0.029  |
|                          | HDR    | 38.57      | 0.981 | 0.015  | 32.33         | 0.939 | 0.049  | 33.97         | 0.925   | 0.048  | 43.38         | 0.993 | 0.007  |
|                          | LDR-OE | 43.66      | 0.991 | 0.007  | 37.25         | 0.973 | 0.020  | 38.51         | 0.964   | 0.027  | 39.22         | 0.978 | 0.017  |
| NeRF-GT <sup>2</sup> [6] | LDR-NE | 41.14      | 0.989 | 0.007  | 34.55         | 0.958 | 0.031  | 35.42         | 0.949   | 0.030  | 37.46         | 0.973 | 0.020  |
|                          | HDR    | 42.49      | 0.989 | 0.002  | 32.66         | 0.913 | 0.012  | 30.72         | 0.798   | 0.039  | 41.15         | 0.975 | 0.015  |

<sup>1</sup> The exposures of input views for NeRF-W are randomly selected from all five exposures to learn five appearance vectors for testing.

 $^{2}$  A version of NeRF (as the upper bound of our method) that is trained from LDR images with consistent exposures or HDR images.

Table 2. Quantitative comparisons with baseline methods on four synthetic scenes. LDR-OE denotes the average LDR results with exposure  $t_1$ ,  $t_3$ , and  $t_5$ . LDR-NE denotes the average LDR results with exposure  $t_2$ , and  $t_4$ . HDR denotes the HDR results. We color code each column as best and second best.

|                          |        |       | Dog   |        |               | Sofa  |        |               | Bear  |        |               | Chair |       |
|--------------------------|--------|-------|-------|--------|---------------|-------|--------|---------------|-------|--------|---------------|-------|-------|
|                          |        | PSNR↑ | SSIM↑ | LPIPS↓ | <b>PSNR</b> ↑ | SSIM↑ | LPIPS↓ | <b>PSNR</b> ↑ | SSIM↑ | LPIPS↓ | <b>PSNR</b> ↑ | SSIM↑ | LPIPS |
|                          | LDR-OE | 13.69 | 0.619 | 0.279  | 15.06         | 0.718 | 0.229  | 11.97         | 0.560 | 0.515  | 12.23         | 0.422 | 0.492 |
| NeRF [6]                 | LDR-NE | _     |       | _      | _             |       |        | _             | _     | _      | _             | _     | _     |
|                          | HDR    | _     |       |        | _             |       |        | _             | _     | _      | _             | _     | _     |
| NeRF-W <sup>1</sup> [4]  | LDR-OE | 31.01 | 0.967 | 0.022  | 30.76         | 0.955 | 0.029  | 32.24         | 0.978 | 0.021  | 28.01         | 0.840 | 0.161 |
|                          | LDR-NE | 30.41 | 0.964 | 0.026  | 30.31         | 0.952 | 0.031  | 32.67         | 0.976 | 0.022  | 26.96         | 0.815 | 0.157 |
|                          | HDR    | _     | _     |        | _             |       |        | _             | _     | _      | _             | _     | _     |
|                          | LDR-OE | 37.77 | 0.981 | 0.016  | 38.29         | 0.977 | 0.014  | 42.91         | 0.990 | 0.010  | 32.45         | 0.905 | 0.081 |
| Ours                     | LDR-NE | 36.52 | 0.976 | 0.018  | 38.35         | 0.976 | 0.014  | 41.19         | 0.987 | 0.012  | 30.78         | 0.886 | 0.083 |
|                          | HDR    | 37.72 | 0.980 | 0.016  | 39.05         | 0.976 | 0.017  | 43.22         | 0.991 | 0.008  | 34.14         | 0.924 | 0.069 |
| NeRF-GT <sup>2</sup> [6] | LDR-OE | 38.43 | 0.981 | 0.017  | 37.91         | 0.975 | 0.046  | 43.84         | 0.991 | 0.009  | 33.79         | 0.926 | 0.070 |
|                          | LDR-NE | 37.86 | 0.980 | 0.016  | 38.67         | 0.978 | 0.014  | 42.95         | 0.990 | 0.008  | 32.17         | 0.912 | 0.070 |
|                          | HDR    | 35.66 | 0.967 | 0.007  | 36.38         | 0.955 | 0.044  | 38.43         | 0.971 | 0.014  | 33.72         | 0.922 | 0.010 |

<sup>1</sup> The exposures of input views for NeRF-W are randomly selected from all five exposures to learn five appearance vectors for testing.

<sup>2</sup> A version of NeRF (as the upper bound of our method) that is trained from LDR images with consistent exposures or HDR images.

Table 3. Quantitative comparisons with baseline methods on real scenes. LDR-OE denotes the average LDR results with exposure  $t_1$ ,  $t_3$ , and  $t_5$ . LDR-NE denotes the average LDR results with exposure  $t_2$ , and  $t_4$ . We color code each column as best and second best.

|                          |        | Computer      |       |        | Flower        |       |        | Luckycat |       |        | Box   |                                                                                        |        |
|--------------------------|--------|---------------|-------|--------|---------------|-------|--------|----------|-------|--------|-------|----------------------------------------------------------------------------------------|--------|
|                          |        | <b>PSNR</b> ↑ | SSIM↑ | LPIPS↓ | <b>PSNR</b> ↑ | SSIM↑ | LPIPS↓ | PSNR↑    | SSIM↑ | LPIPS↓ | PSNR↑ | SSIM↑                                                                                  | LPIPS↓ |
|                          | LDR-OE | 14.68         | 0.697 | 0.281  | 14.60         | 0.504 | 0.524  | 13.67    | 0.706 | 0.262  | 17.06 | 0.770                                                                                  | 0.233  |
|                          | LDR-NE |               |       | —      |               |       | —      |          |       | —      |       | Box   SSIM↑   0.770      0.927   0.923   0.952   0.945   0.953   0.944   0.968   0.965 |        |
|                          | LDR-OE | 28.91         | 0.919 | 0.112  | 26.23         | 0.933 | 0.094  | 30.00    | 0.927 | 0.076  | 29.21 | 0.927                                                                                  | 0.097  |
| NEKF-W [4]               | LDR-NE | 27.54         | 0.892 | 0.136  | 26.84         | 0.939 | 0.078  | 30.78    | 0.940 | 0.058  | 29.59 | 0.923                                                                                  | 0.104  |
| Orrent                   | LDR-OE | 31.41         | 0.944 | 0.086  | 27.84         | 0.943 | 0.078  | 31.82    | 0.937 | 0.067  | 30.59 | 0.952                                                                                  | 0.070  |
| Ours                     | LDR-NE | 29.01         | 0.923 | 0.112  | 26.82         | 0.939 | 0.072  | 31.40    | 0.944 | 0.059  | 30.45 | 0.945                                                                                  | 0.079  |
| Ours                     | LDR-OE | 32.42         | 0.950 | 0.077  | 29.81         | 0.948 | 0.069  | 32.85    | 0.938 | 0.062  | 31.54 | 0.953                                                                                  | 0.068  |
|                          | LDR-NE | 31.21         | 0.931 | 0.098  | 30.05         | 0.949 | 0.058  | 33.13    | 0.948 | 0.051  | 31.40 | 0.944                                                                                  | 0.079  |
| NeRF-GT <sup>2</sup> [6] | LDR-OE | 34.34         | 0.955 | 0.075  | 32.84         | 0.957 | 0.057  | 34.56    | 0.951 | 0.049  | 36.55 | 0.968                                                                                  | 0.050  |
|                          | LDR-NE | 32.73         | 0.940 | 0.090  | 33.38         | 0.957 | 0.048  | 36.42    | 0.962 | 0.035  | 35.97 | 0.965                                                                                  | 0.044  |

<sup>1</sup> The exposures of input views for NeRF-W are randomly selected from all five exposures to learn five appearance vectors for testing.

<sup>2</sup> A version of NeRF (as the upper bound of our method) that is trained from LDR images with consistent exposures. <sup>†</sup> An ablation study of our method that models the tone-mapping operations of RGB channels with a single MLP.



Figure 2. Qualitative comparisons of novel LDR views with novel exposures. The upper triangular images are the ground truth and the lower triangular images are the rendered views. Zoom-in insets and error maps are given on the right. MSE values are on the bottom right of error maps.



Figure 3. Qualitative results of our novel views on real scenes. (a) Our tone-mapped HDR views using Photomatix [2]. (b) Our novel LDR views with novel exposures. (c) Ground truth LDR views.



Figure 4. Qualitative results of our novel HDR views on synthetic scenes. All the HDR views are tone-mapped using Photomatix [2]. (a) Our novel HDR views. (b) The novel HDR views by NeRF-GT that a NeRF model is tarined from HDR views. (c) The ground truth HDR views.



Figure 5. All the discrete CRFs estimated by our method on (a–h) synthetic scenes and (i–l) real-world scenes. On real-world scenes, we calibrate the CRF of digital camera using the method by Debevec and Malik [3].