
Table 8. Comparison with hand-crafted spatial alignment methods. The experiments on MS-COCO is based on Mask R-CNN archi-
tecture with the ResNet-50 FPN backbone and the 1×/2× schedule [41], following [40, 43, 44].

Method Epoch
IN-1K MS-COCO (1× Schedule) MS-COCO (2× Schedule)

Acc@1 Acc@5 APb APb
50 APb

75 APm APm
50 APm

75 APb APb
50 APb

75 APm APm
50 APm

75

DenseCL [40] 200 63.6 85.8 40.3 59.9 44.3 36.4 57.0 39.2 41.2 61.9 45.1 37.3 58.9 40.1
ReSim [43] 200 66.1 - 39.8 60.2 43.5 36.0 57.1 38.6 41.4 61.9 45.4 37.5 59.1 40.3
LEWELM 200 68.1 88.6 40.0 59.8 43.7 36.1 57.0 38.7 - - - - - -
LEWELB 200 72.8 91.0 41.3 61.2 45.4 37.4 58.3 40.3 42.2 62.3 46.1 38.2 59.6 41.1

PixelPro [44] 400 60.2 83.0 41.4 61.6 45.4 37.4 - - - - - - - -
LEWELB 400 73.8 91.7 41.9 62.4 46.0 37.9 59.3 40.7 43.4 63.5 47.7 39.1 60.7 42.4
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Figure 4. An illustration of the channel grouping scheme. Here
the number of groups h is set to 2 for simplicity.

A. Additional Illustration of LEWEL

A.1. Illustration of the channel grouping operation.

Instead of using one alignment map to aggregate one
aligned representation, we introduce a grouping scheme
that divides the channels of F′ uniformly into h equal-size
groups, that is F′ = [F′(1), · · · ,F′(h)] where [·] denotes
the concatenation operation. Given the alignment maps
{W′

k}dk=1, we can accordingly aggregate a set of aligned
representations {y′

k : y′
k ∈ RD}d/hk=1, and

y′
k = [W′

(k−1)×h+1 ⊗ F′(1), · · · ,W′
k×h ⊗ F′(h)], ∀k, (6)

where ⊗ is the spatial aggregation operation defined in
Eq. (1). For a more intuitive illustration, we summarize the
overview of this channel grouping scheme in Fig. 4, where
we set the number of groups h = 2 for simplicity.

B. Additional Experiment Results
B.1. Comparison with hand-crafted spatial align-

ment methods

Prior methods [40, 43, 44] are tailored for dense predic-
tion and use pre-defined manual rules to match correspond-
ing pixels. They emphasized on local feature learning and
largely ignored the learning of global features that is also
important in transferring to both classification and detec-
tion tasks (see Sec. 3.4 in [44]). In contrast, LEWEL is
a generic method and benefits both image-level and dense
predictions. LEWEL leverages the global projection head
to predict the spatial alignment maps such that couples the
learning of global features and aligned features. Our experi-
mental results in Tab. 8 show that LEWEL significantly out-
performs [40,43,44] in terms of classification by up to 13%
while performing on par with or even better than [40,43,44]
on detection/segmentation under 1×/2× training schedule,
highlighting the generalization ability of LEWEL.

C. Additional Analyses on LEWEL
C.1. Visualization of the alignment maps.

In Fig. 5, we visualize the alignment maps predicted by
LEWELM on the ImageNet-1K validation set, which sug-
gest that LEWEL can automatically find semantically con-
sistent alignments for self-supervised learning. Specifically,
we observe that the alignment maps may activate on the re-
gion of an object (e.g., the visualization in the 3rd column,
1st-2nd rows), the region of multiple objects (e.g., the vi-
sualization in the 3rd column, 3rd-4th rows), and on the
global region (e.g., the visualization in the 3rd column, 5th-
6th rows). The visualization demonstrates that LEWEL is
able to learn on both local and global representations simul-
taneously by manipulating the alignment maps.

C.2. Computational cost.

In Tab. 9, we compare the training time of LEWEL with
that of the baselines. The comparison is performed on a
single machine with eight V100 GPUs, CUDA 10.1, Py-
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Figure 5. Visualization of the alignment maps predicted by LEWELM on the ImageNet-1K validation set. First column: the input
images from the ImageNet validation set. Second column: augmented views generated by random data augmentations. The rest columns:
alignment maps predicted by LEWELM based on augmented views. The visualization shows that LEWEL automatically finds semantically
consistent alignments for self-supervised learning.

Torch 1.8, and the automatic mixed precision (AMP) train-
ing1. For all methods, we report their training time of one
epoch. According to the results in Tab. 9, we can observe
that the training time of our method is only marginally
increased compared to the baselines. To be more con-

1We find that AMP has little impact on the training time of
MoCov2/LEWELM but reduces that of BYOL/LEWELB by ∼40%.

crete, LEWELB requires only ∼4% additional overhead
compared with BYOL while significantly outperforming
BYOL, which demonstrates the efficiency of LEWEL.

C.3. Limitations.

One disadvantage of LEWEL is that the number of
aligned representations largely depends on the output di-



Table 9. Training time comparison on with MoCov2 and BYOL
on the ImageNet-1K dataset. The comparison is performed on a
single machine with eight V100 GPUs using the automatic mixed
precision (AMP) training in PyTorch 1.8.

Method Training Time/Epoch Top1 Acc.@200 Epochs

MoCov2 1213s 64.5
LEWELM 1222s 66.1

BYOL 1141s 70.6
LEWELB 1191s 71.5

mensionality d of the coupled projection head g. In the
cases where d is very large, LEWEL might incur additional
training overheads. Nevertheless, we note that our chan-
nel grouping scheme can mitigate this drawback by using
a larger number of groups to reduce the number of aligned
representations.




