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In this supplementary material, we first detail our mod-
ified ID-wise reservoir sampling algorithm which is origi-
nally an instance-wise one. Then we provide detailed in-
troduction for datasets used in this work and give more im-
plementation details. Finally, we present more experiment
results and discuss the ethical impact of this work.

1. ID-wise Reservoir Sampling Algorithm
As introduced in our main body, we set up a memory

buffer with limited size for data replay, which is updated
using ID-wise Reservoir Sampling algorithm at the end of
each stage. Here, we detail this algorithm which is modified
from the regular one that is instance-wise.

The regular reservoir sampling algorithm [8] is designed
to choose a subset of k individuals at random, without re-
placement, from a population of size N in a sequence. Here,
N is allowed to be unknown and typically large. In this
algorithm, each sample is chosen with an equal probabil-
ity over the part of the population seen so far. However,
for the data replaying adopted in our targeted LUDA person
ReID problem, we expect the stored samples are of diverse
data statistics to avoid over-fitting them. Thus, we propose
to modify the regular reservoir sampling algorithm to be an
ID-wise one, in the sense that each ID will be randomly cho-
sen for storing with an equal probability over all identities
that have been seen so far.

We describe the ID-wise reservoir sampling algorithm in
Alg. 1. The record function summarizes all samples into a
dictionary structure according to their identities, where the
keys of the dictionary are the recorded identities while its
values are the corresponding sample indexes. The select
function randomly selects K samples for a given ID. Here,
if the number of samples of the given ID is less than K,

*This work was done when Zhipeng Huang was an intern at MSRA.
†Equal contribution.
‡Corresponding authors.

Algorithm 1 ID-wise Reservoir Sampling Algorithm
M: the memory buffer with the size of ∥M∥;
Nid: the total number of IDs observed so far;
K: the number of samples stored for each identity;
X t

j : the data set in the j-th stage of the target stream;
Yt

j : the pseudo labels of X t
j , obtained via clustering.

procedure ID-RESERVOIR(M, ∥M∥ , Nid,K,X t
j ,Yt

j )
id dicts = record(X t

j ,Yt
j)

for i = 0 to len(id dicts.keys())−1 do
indices = id dicts[i]
(xtk, ytk)Kk=1 = select(X t

j ,Yt
j , indices,K)

if ∥M∥ //K > Nid then
M[Nid∗K, (Nid + 1) ∗K]← (xtk, ytk)Kk=1

else
r = random(min = 0,max = Nid)
if r < ∥M∥ //K then
M[r∗K, (r + 1) ∗K]← (xtk, ytk)Kk=1

end if
end if
Nid ← Nid + 1

end for
returnM

end procedure

we will adopt data augmentation (i.e., random horizontal
flipping, random cropping and random erasing) to augment
the current samples and store augmented samples. The
random function randomly produces an integer between
the provided minimum and maximum values inclusively.
We compare it to the regular instance-wise reservoir sam-
pling algorithm in the Fig.5 of our main body. The exper-
iment results demonstrate the superiority of our modified
ID-wise reservoir sampling algorithm relative to its origi-
nal version when adopted to our proposed scheme CLUDA-
ReID for LUDA person ReID.
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Algorithm 2 Coordinated Data Replay (CDR) Algorithm
M: the memory buffer for storing old samples;
θ: the parameters of the backbone network;
ϕ: the parameters of the classifier;
α: the learning rate of the meta-train optimization;
η: the learning rate of the meta-optimization;
LAdap: the optimization objective for adaptation;
LAntiF : the optimization objective for anti-forgetting.

Init: parameters Ψ = {θ, ϕ}, learning rates η, α.
for t in iterations do

Meta-train:
Sample a batch Bn from the new data.
Compute LAdap(Ψt) with Bn. ▷ Eq. (1)
Update Ψ w.r.t. LAdap:

Ψ′
t ← Ψt − α∇ΨtLAdap(Ψt)

Meta-test:
Sample a batch Bo from the old data stored inM.
Compute LAntiF (Ψ

′
t) with Bn and Bo. ▷ Eq. (2)

Meta optimization:
LCDR = LAdap(Ψt) + LAntiF (Ψ

′
t). ▷ Eq. (4)

Update model parameters:
Ψt+1 ← Ψt − η▽Ψt

LCDR.
end for
Output: θ, ϕ

2. Optimization of Coordinated Data Replay
We describe the training procedure of CLUDA-ReID us-

ing the proposed coordinated data replay in Alg. 2. For
simplicity, we show the case where we take the “task” of
adaptation as meta-train while taking the “task” of anti-
forgetting as meta-test. Theoretically, as indicated in the
Eq.(6) of our manuscript, the orders of these two tasks
are exchangeable for the meta optimization. Our empir-
ical study also demonstrates that iteratively choosing one
of these two tasks (i.e., adaptation and anti-forgetting) as
meta-train while taking the other one as meta-test delivers
very close performance with our reported ones.

3. Detailed Introduction for Datasets
In this work, we use four public datasets PersonX

(PX) [7], Market1501 (MA) [11], CUHK-SYSU (SY) [10],
MSMT17 (MS) [9] for pre-training and lifelong unsuper-
vised domain adaptation, and build a new dataset MMP-
Retrieval for unseen domain generalization evaluation.

PersonX [7] is a synthetic dataset generated based on
Unity [6], containing 45,792 images, where 410 identities
are used for training and 856 identities are used for testing.

Market1501 [11] has 12,936 images of 751 identities for
training and 19,732 images of 750 identities for testing. Its
test split has 3,368 query images and 16,364 gallery images.

CUHK-SYSU [10] is originally a large-scale dataset for

Figure 1. Examples of different environments in MMP-Retrieval.

person search task, containing 18,184 images and 8,432
identities. Following the previous work [5], we employ a
subset of CUHK-SYSU using the bounding box annota-
tions, in which each identity includes at least 4 person crops.
As a result, the training set of this subset includes 942 iden-
tities while its test set includes 2,900 identities.

MSMT17 [9] is a large-scale person ReID dataset which
is captured from 15 cameras (including 12 outdoor cam-
eras and 3 indoor cameras). It contains 126,441 images of
4,101 identities, where 1,041 identities and 3,060 identities
are used for training and testing respectively.

MMP-Retrieval, the new dataset we propose in this pa-
per, is built upon the Multi-camera Multiple People Track-
ing dataset (i.e., MMPTRACK) which is released in ICCV
2021 Multi-camera Multiple People Tracking Workshop*.
It is available at https://iccv2021-mmp.github.
io/subpage/dataset.html. In MMP-Retrieval, all
videos are collected in 5 simulated environments: retail,
lobby, industry, cafe and office, including 28 people par-
ticipating in recording (14 in training, 7 in validation and 7
in testing). All people were paid and signed an agreement to
release their data to the public for research usage. So there
is no privacy issue. MMP-Retrieval is built using the combi-
nation of the training and validation splits of MMPTRACK
dataset, comprising 21 identities in all. To make the sam-
ples in MMP-Retrieval diverse, we uniformly downsample
the original video sequences of MMPTRACK with a ratio
of 128, then divide each downsampled sequence into two
halves. We use the cropped persons in the first half as the
query set and those in the second half as the gallery set.
Although this dataset contains a limited number of identi-
ties, the diverse camera angles and cluttered backgrounds
(as illustrated in Fig. 1) still make MMP-Retrieval a chal-
lenging test dataset for unseen-domain generalization eval-
uation. To avoid cloth-changing cases crossing different en-
vironments, we report the Rank-1 and mAP scores averaged
over all environments in our experiments.

*https://iccv2021-mmp.github.io



Figure 2. The empirical study results for the size of the memory buffer. This experiment is conducted in the stationary target scenario. The
performances on the source domain (PersonX) are in (a) while those on the target domain (Market1501) are in (b).

4. More Implementation Details

Following the prior works for UDA person ReID [2, 3],
we use the clustering algorithm of DBSCAN [1] to gen-
erate pesudo labels, where the maximum distance between
neighbors is set to 0.6 and the minimal number of neighbors
for a dense point is set to 4. We balance different terms in
LAdap and LAntiF to make their corresponding gradients
lie in similar ranges, and we empirically find that setting all
of their weights to be 1 works well. We train the model on
the source domain for 60 epochs, and train the model on
each domain of the stationary/dynamic scenarios for 40/60
epochs, respectively. We adopt Adam [4] optimizer with
a weight decay of 5 × 10−4. In the pre-training stage on
the source domain or each fine-tuning stage on the target
domain, as in Alg. 2, the learning rate η for the meta opti-
mization is initialized to 3.5× 10−4 and the learning rate α
is initialized to 3.5× 10−3. Both η and α is decayed with a
factor of 0.1 in the 40th epoch. Unless otherwise specified,
the size of the memory buffer is set to 512, and 8 randomly
sampled images are stored for each sampled identity using
the Alg. 1.

5. More Experiment Results

5.1. Empirical Study for the Memory Buffer Size

In this section, we conduct an empirical study for the size
of the memory buffer. As shown in Fig.2, the performances
on the source and target domains both become higher as the
size of the memory buffer increases. This is because more
historical data will deliver more benefits for capturing new
knowledge while recalling old knowledge, thanks to the
coordination between timely adaptation and anti-forgetting
in our proposed scheme. In practice, we need to consider
the trade-off between the storage burdens and performance.
Thus, we recommend using the memory size of 512.

Figure 3. The mAP results of the ablation study on the meta-
optimization strategies.

Figure 4. The mAP results of the ablation study on different design
choices of the technical components in our CLUDA-ReID.

5.2. More Results with the mAP Metric

For simplicity, in our manuscript, we only report the ex-
periment results of our ablation study using the Rank-1 met-
ric. In this section, we provide more experiment results us-
ing mAP as the evaluation metric in Fig.3 and Fig.4. Com-
paring the Fig.3 and Fig.4 in this supplementary to the Fig.4
and Fig.5 in our manuscript, we can find the experiment re-
sults in mAP has very consistent trend with those in Rank-1.
This further demonstrates the effectiveness and superiority
of different components in our proposed CLUDA-ReID.



Methods MS (t=1) MA (t=2) SY (t=3) MS (t=4) MA (t=5) SY (t=6)
R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

Stage-wise UDA (Base.) 24.16 9.13 66.69 40.99 57.83 54.42 23.43 8.90 68.92 43.43 56.33 52.83
Base. + Data Replay 26.08 9.45 68.08 43.26 59.14 59.03 27.38 9.83 70.34 47.34 61.43 59.24
Base. + CDR 28.03 11.03 70.32 46.42 63.12 64.34 29.34 11.63 72.43 52.31 67.21 67.82
Base. + CDR + KL Reg. 29.64 11.82 72.80 48.63 69.11 68.48 32.43 12.88 78.36 56.73 74.43 73.33
Base. + CDR + RCL 31.66 12.15 74.44 51.55 75.90 74.56 35.48 14.98 81.32 61.33 84.23 82.13
pretrain (t=0) 18.02 5.02 54.04 27.67 46.52 48.62 18.02 5.02 54.04 27.67 46.52 48.62
All-in-one UDA 36.37 17.84 85.12 68.59 86.76 84.70 36.37 17.84 85.12 68.59 86.76 84.70

Table 1. Adaptation performance (%) evaluation in the dynamic target scenario. We test the model instantly at the end of each stage, on its
corresponding test set. The training order is PX→MS→MA→SY→MS→MA→SY. Our CLUDA-ReID is marked in gray shading.

Methods
t=3 t=6

PX MS MA PX MS MA
R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP

Stage-wise UDA (Base.) 48.95 27.13 10.83 3.01 50.98 25.22 40.83 16.45 8.83 2.79 48.42 21.42
Base. + Data Replay 58.26 39.29 18.60 6.01 56.15 29.41 52.39 24.28 20.11 7.83 58.32 31.21
Base. + CDR 63.93 44.33 20.49 8.21 59.74 32.70 58.46 39.64 22.21 9.03 63.74 35.71
Base. + CDR + KL Reg. 72.75 54.24 22.09 8.94 63.34 36.77 67.45 48.43 25.38 10.95 69.24 42.43
Base. + CDR + RCL 85.57 71.16 26.16 11.07 69.75 43.70 70.42 51.36 31.46 13.91 77.34 50.11
Pre-trained Model (t=0) 94.86 86.34 18.02 5.02 54.04 27.67 94.86 86.34 18.02 5.02 54.04 27.67
All-in-one UDA 40.43 16.44 36.37 17.84 85.12 68.59 40.43 16.44 36.37 17.84 85.12 68.59

Table 2. Anti-forgetting performance (%) evaluation in the dynamic target scenario. We test the model on the test-sets of all domains at the
end of the 3rd stage (t=3) and the 6th stage (t=6). The training order is PX→MS→MA→SY→MS→MA→SY. Note that we omit the SY
dataset for brevity because it appears in the final, whose results can not reflect the anti-forgetting ability. CLUDA-ReID is marked in gray.

5.3. Experimental Analysis for the Training Orders

In the manuscript, we demonstrate the effectiveness
of CLUDA-ReID in the dynamic target scenario with the
training order of PX→MA→SY→MS→MA→SY→MS.
In practice, the order of target domains is agnostic. To ver-
ify this, we conduct an experiment in the dynamic target
scenario with another domain order: PX→MS→MA→SY
→MS→MA→SY. Other configurations are kept the same
as that in the Sec.5.4 of the manuscript.

In Tab.1, we measure the performance at the end of each
stage for evaluating the timely adaptation performance. The
scheme Base.+CDR achieves 3.87%/1.90%, 3.63%/5.43%,
5.29%/9.92% improvements in R-1/mAP on MS, MA and
SY respectively when these domains first appear, and
achieves 5.91%/2.73%, 3.51%/8.88%, 10.88%/14.99% im-
provements in R-1/mAP on MS, MA and SY respec-
tively when these domains show up for the second time.
The scheme Base.+CDR+RCL is superior to the base-
line Stage-wise UDA by 7.50%/3.02%, 7.75%/10.56%,
18.07%/20.14% improvements in R-1/mAP on MS, MA
and SY when these domains first appear, and by
12.05%/6.08%, 12.40%/17.90%, 27.90%/29.30% improve-
ments in R-1/mAP on MS, MA and SY when they appear
for the second time. The trends of experiment results in
this domain order is consistent with those in the Sec.5.4 of
our manuscript, further demonstrating the effectiveness of
CLUDA-ReID in timely adapting to new environments.

In Tab.2, we measure the performance at the end of the
3rd stage ( i.e., t=3, all domains are traversed once) and at
the end of the 6th stage (i.e., t=6, all domains are seen for

the second time), for evaluating the anti-forgetting capacity
of our proposed method. Relative to the model pre-trained
on PX, the scheme Base.+CDR+RCL ranks the first with
performance degradation of 9.29%/15.18% in R-1/mAP on
PX at the end of the 3rd stage, and with performance degra-
dation of 24.44%/34.98% in R-1/mAP on PX at the end of
the 6th stage. Besides, comparing the results in Tab.2 to the
timely measured results in Tab.1, we find that the scheme
Base.+CDR+RCL is of the lowest performance degradation
over all domains. It also shows consistent trend with that
in the Sec.5.2 of our manuscript, demonstrating the effec-
tiveness of our proposed CLUDA-ReID in anti-forgetting.
The above experiment results present that our proposed
CLUDA-ReID performs consistently with different domain
orders in the dynamic target scenario. This shows the prac-
ticability of CLUDA-ReID.

6. Ethical Impact

Our method is proposed to address more practical sce-
narios by achieving continuous domain adaptation using un-
labeled streaming data in deployment environments. Our
proposed task LUDA person ReID and its corresponding
scheme CLUDA-ReID take an important next step in pri-
vacy protection since we do not need any identity annota-
tions of real persons. (Note that we pre-train the person
ReID models on synthetic data.) Despite this, it may still
cause a violation of human privacy. Therefore, governments
and officials need to carefully formulate strict regulations
and laws to ensure the legal use of person ReID related tech-
nologies and strictly protect the data.



References
[1] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,

et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD, volume 96, pages
226–231, 1996. 3

[2] Yixiao Ge, Dapeng Chen, and Hongsheng Li. Mutual mean-
teaching: Pseudo label refinery for unsupervised domain
adaptation on person re-identification. In ICLR, 2020. 3

[3] Yixiao Ge, Feng Zhu, Dapeng Chen, Rui Zhao, and Hong-
sheng Li. Self-paced contrastive learning with hybrid mem-
ory for domain adaptive object re-id. In NeurIPS, 2020. 3

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

[5] Nan Pu, Wei Chen, Yu Liu, Erwin M Bakker, and Michael S
Lew. Lifelong person re-identification via adaptive knowl-
edge accumulation. In CVPR, pages 7901–7910, 2021. 2

[6] John Riccitiello. John riccitiello sets out to identify the
engine of growth for unity technologies (interview). Ven-
tureBeat. Interview with Dean Takahashi. Retrieved January,
18(3), 2015. 2

[7] Xiaoxiao Sun and Liang Zheng. Dissecting person re-
identification from the viewpoint of viewpoint. In CVPR,
pages 608–617, 2019. 2

[8] Jeffrey S Vitter. Random sampling with a reservoir. TOMS,
11(1):37–57, 1985. 1

[9] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In CVPR, pages 79–88, 2018. 2

[10] Tong Xiao, Shuang Li, Bochao Wang, Liang Lin, and Xiao-
gang Wang. Joint detection and identification feature learn-
ing for person search. In CVPR, pages 3415–3424, 2017.
2

[11] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In ICCV, pages 1116–1124, 2015. 2


