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A. Depth-Aware Transformer

Transformer architecture. The detailed architecture of

depth-aware transformer (DTR) is shown in Figure 1. The

encoder aims to generate the encoded context-aware fea-

tures, while the decoder produces the fused feature from

context- and depth-aware features through the multiple self-

attention layers. Besides, we supplement two features with

the proposed depth positional encoding (DPE) before pass-

ing them to the transformer, enabling better 3D reasoning.
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Figure 1. The architecture of depth-aware transformer (DTR).

DPE is the depth positional encoding proposed in the main paper.

Effectiveness of linear attention. Table 1 shows the re-

sults of different self-attention layers on the KITTI dataset,

where we can observe that applying linear attention [4] can

achieve almost 4 × faster than vanilla self-attention [6] with

comparable performance. Thus, we adopt the linear atten-

tion [4] in our transformers for real-time applications.

Attention Time
AP3D@IoU=0.7 APBEV@IoU=0.7

Easy Mod. Hard Easy Mod. Hard

vanilla SA [6] 136 ms 24.38 18.39 16.35 31.57 24.51 21.40

linear SA [4] 37 ms 24.52 18.57 15.51 33.33 25.35 21.68

Table 1. Comparison of different self-attention mechanisms on

the KITTI validation set for Car category. We follow the same

setting and device as in the main paper for running time measure-

ment. Note that ’SA’ is the multi-head self-attention. The metric

is AP40.

Disc. Method
AP3D@IoU=0.7 APBEV@IoU=0.7

Easy Mod. Hard Easy Mod. Hard

UD 23.22 17.67 14.80 31.75 24.32 20.08

SID 23.89 18.10 15.22 32.19 24.76 21.36

LID 24.52 18.57 15.51 33.33 25.35 21.68

Table 2. Comparison of different discretization methods for

auxiliary depth supervision on the KITTI validation set for Car

category. The metric is AP40.

B. Auxiliary Depth Supervision

Depth ground truth generation. We project the LiDAR

signals into the image plane to generate the sparse ground

truth depth map. Then we apply linear-increasing dis-

cretization (LID) [5] method to convert continuous depth

d to discretized depth bins. The LID is defined as follows:

d = dmin +
dmax − dmin

D(D + 1)
· i(i+ 1), i = {1, ..., D}, (1)

where i is the depth bin index. The number of depth bins

D is set as 96, and the range of depth [dmin, dmax] is set

as [1, 80]. Note that the pixels with the depth value out-

side the range will be marked as invalid and not used for

optimization during training.

Different discretization methods. In Table 2, we investi-

gate the effectiveness of different discretization methods for

depth auxiliary supervision. In addition to the LID method,

the continuous depth can be discretized using uniform dis-

cretization (UD) with fixed bin size: dmax−dmin

D
, or spacing-

increasing discretization (SID) [3] with the increasing bin

size in the log space. It can be observed that using the LID

strategy can achieve better performance, so we apply it as

our discretization method.



Figure 2. Qualitative results on the KITTI validation set for multi-class 3D object detection. We utilize orange, blue, and green colors

to indicate car, pedestrian, and cyclist categories, respectively.

C. Results on nuScenes Dataset

Table 3 shows the experimental results of deploying our

proposed approach on nuScenes [1] val set. Under the

same configurations (e.g., backbone and training schedule),

our model achieves better performance than two 3D ob-

ject detection baselines (FCOS3D [7], and PGD [8]), which

demonstrates the effectiveness of our approach.

Method NDS ↑ mAP ↑

FCOS3D [7] 37.7 29.8

PGD [8] 39.3 31.7

Ours 40.1 33.8

Table 3. Detection performance on nuScenes val set. We build

our approach based on FCOS3D [7]. The experiments are con-

ducted under the same training settings (trained for 12 epochs).

The results of baselines are taken from MMDetection3D [2].

D. Qualitative Visualization

More visualization results. In Figure 2, we provide

some qualitative results on the KITTI dataset for multiple-

category predictions. In Figure 3, we show the qualita-

tive comparisons of the baseline (without proposed depth-

aware modules) and our MonoDTR (full model). It can be

observed that our MonoDTR can generate higher quality

bounding boxes benefit from the aid of depth cues.

Failure case. We show a representative failure case in Fig-

ure 4. The lower-quality 3D bounding box is caused by the

inaccurately predicted object depth, which is typical in most

monocular 3D object detection tasks.

E. Broader Impacts

Our work aims to develop the monocular 3D object de-

tection approach for autonomous driving. The proposed

model may generate inaccurate object depth prediction,



Figure 3. Qualitative comparison on the KITTI validation set for the car category. The purple boxes in the image and BEV plane

represent the predictions from MonoDTR. The green and pink boxes on BEV are the ground truth and the predictions from baseline (our

full model without proposed depth-aware modules), respectively. Best viewed in color and zoomed in.

Figure 4. Failure case. The purple and green boxes represent the predictions from MonoDTR and ground truth, respectively. The failure

case is caused by the inaccurate object center depth estimation.

leading to incorrect downstream decision-making and po-

tential traffic accidents. Furthermore, we provide a new

perspective of leveraging learned depth-aware features to

assist monocular 3D object detection. Although consider-

able progress has been made with our proposed lightweight

depth-aware feature extraction module, we believe it is

worth further exploring how to learn depth-aware features

to effectively improve detection performance.
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