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1. Overview

This document provides the supplementary material to
our proposed neural compression-based feature learning for
video restoration, including detailed network architecture,
training details for different tasks, and additional ablation
studies. More comparisons on video denoising, video de-
raining and video dehazing are also presented. We will re-
lease our source code upon acceptance. We also provide the
restored videos to verify the authenticity of our scheme.

2. Network Architecture

Our framework contains three parts: feature alignment,
feature refinement (including feature attention module and
neural compression-based feature learning module), and
feature fusion. In this supplementary material, we present
the network architecture details.
MV refinement module. The structure of the MV refine-
ment module is shown in Fig. 1 (a). The MV refinement
module encodes the corrupted MV into a compact represen-
tation and then decodes it to the refined MV. Specifically,
we use two convolutional layers with stride=2 to encode the
corrupted MV and two deconv layers to decode the refined
MV. The number of the channel of the intermediate features
is 64. As GDN [1] could reduce the statistical dependencies
of the features and compact the features, we use GDN [1]
in the encoder and use the inverse-GDN (IGDN) in the de-
coder correspondingly.
Feature attention module. As Fig. 1 (b) shows, the fea-
ture attention module takes the noisy frame xt and aligned
features ĉt as input, then generates the spatial-channel at-
tention map mt. The feature attention module is based on
an auto-encoder with the following modifications. First, we
use Resblock [11] to extract the features at each scale. Sec-
ond, we add 4 Resblocks at the largest scale to increase the
receptive field with minor computation cost. To keep the
feature attention module lightweight, the numbers of the

*This work was done when Cong Huang was an intern at Microsoft
Research Asia.

channels of the intermediate features are 16, 32, 64 for three
scales, respectively.

Neural compression-based feature learning module. As
Fig. 2 shows, the neural compression-based feature learning
module contains a prior model, a feature encoder, and a fea-
ture decoder. The prior model learns to estimate the param-
eters (µt, σt, qt) that are used in the adaptive quantization
and the LossCE . The feature encoder encodes the features
čt into compact latent codes et. Then the latent codes et are
processed by our proposed adaptive quantization. At last,
the refined features c̃t are decoded from the processed latent
codes êt. For the prior model, we use three convolutional
layers (two layers are with stride=2) to estimate the param-
eters, where LeakyReLU is used as the activation function.
For the feature encoder and decoder, we use two convolu-
tional layers with stride=2 to encode the features and two
deconvolutional layers to decode the noise-robust features.
The number of the channel of the intermediate features is
64.

Restoration module. As Fig. 3 shows, the restoration mod-
ule fuses the noise-robust features c̃t with the current frame
xt, and then generates the final output frame ỹt. At the
same time, the features ct used by next step are also gener-
ated. Following previous image restoration methods [5, 8],
we adopt a deep U-Net [15] as our restoration module for
synthetic video denoising, video deraining and video de-
hazing. We also leverage the channel-attention block [25]
(CAB) to extract the features at each scale. The structure
of CAB is shown in Fig. 3 (b) and the GAP means the
global average pooling. The features from the skip connec-
tion are processed by a convolutional layer. The numbers
of the channels of the intermediate features are 32, 64, 128,
256, 512 for five scales, respectively. We also propose a
more powerful W-Net-like [20] restoration module for real-
world video denoising which is a more challenging task. As
Fig. 4 shows, we cascade two U-Net restoration modules
as our W-Net-like restoration module. The number of the
channel of the intermediate features of each scale remains
unchanged.
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（a）MV refinement module （b）Feature attention module

Figure 1. The structure of MV refinement module and feature attention module.
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Figure 2. The structure of neural compression-based feature learning module.

3. Training Details

We adopt AdamW optimizer and cosine annealing learn-
ing rate scheduler. The initial learning rates of the motion
estimation module and other modules are set to 2.5e-5 and
2e-4, respectively. The weights of the motion estimation
module are fixed during the first 2500 iterations. The batch
size is 16 and each sample in the batch is a 5-frame video
clip. The patch size is 128x128. The data augmentation in-
cludes random horizontal, vertical, and transposed flipping.

During the training, we use a two-stage training scheme
to learn the noise-robust feature representation and then
make this feature representation help the final reconstruc-
tion. In the first stage, we use the LossL2 and LossCE

to train the model for 50k iterations. The first stage train-
ing not only provides the feature generation a good start-
ing point but also helps the compression module converge
to a relatively stable status which can effectively filter the
noisy and irrelevant information. The second stage only use
LossL2 for the rest iterations. With a well-trained compres-
sion module, the second stage carefully fine-tunes the quan-
tization step size and the mean value only guided by the
LossL2. This helps the model focus more on the model’s
generation ability for better reconstruction quality. This
simple two-stage training helps the temporal features be ro-
bust to the noise, and then lets these features improve the
final quality.

The main difference of training setting among differ-
ent datasets is the number of total iterations. For DAVIS

[14] dataset and CRVD [23] dataset, we train our model
for 100k iterations and 200k iterations, respectively. For
RainSynLight25 [12], RainSynComplex25 [12], RainSy-
nAll100 [22] and NTU-Rain [6], we train our model for
200k, 200k, 250k and 100k iterations, respectively. For RE-
VIDE [24], we train our model for 50k iterations. Besides,
we follow the setting in CG-IDN [24] and use patch size
384x384 in our method for REVIDE.

4. More Ablation Studies
We conduct more ablation studies about the effect of dif-

ferent modules, the weight of the cross-entropy loss, and the
effect of the neural compression-based feature learning on
clean features.

4.1. The Effect of Different Modules

This paper proposes three key modules: the MV refine-
ment (MVR) , the neural compression-based feature learn-
ing (NCFL) incorporated with adaptive quantization, and
the feature attention (FA). We study the effect of these mod-
ules and report the results in the main paper. In this supple-
mentary material, we conduct the experiments by using nor-
mal convolutional layers (without auto-encoder structure)
to replace MVR and NCFL, for demonstrating that the im-
provements of our modules are not from increasing com-
plexity or deeper structure. MVR is replaced by normal
convolutional layers, denoted as M-Conv. NCFL is replaced
by normal convolutional layers, denoted as N-Conv. The
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Figure 3. The structure of U-Net-like restoration module and CAB block.
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Figure 4. The structure of W-Net-like restoration module.

Ma Mb Mc Md Me Mf

MVR ✓ ✓ ✓ ✓
M-Conv ✓
NCFL ✓ ✓
N-Conv ✓
FA ✓
PSNR 29.75 29.87 29.79 30.29 29.93 30.45
GFLOPs 534 548 557 613 639 771

Table 1. The ablation study on different modules. Tested on Set8
(σ = 50). MVR denotes the MV refinement. NCFL denotes the
neural compression-based feature learning. FA denotes the feature
attention. M-Conv represents that we use the normal convolutional
layers with slightly larger complexity than MVR to replace MVR.
N-Conv represents that we use the normal convolutional layers
with slightly larger complexity than NCFL to replace NCFL.

complexity of M-Conv and N-Conv is slightly higher than
that of MVR and NCFL, respectively. As Table 1 shows,
replacing MVR with M-Conv causes a 0.08 dB PSNR drop
(Mb → Mc) and replacing NCFL with N-Conv causes a
0.36 dB PSNR drop (Md → Me). These results verify that
the improvement of performance is not brought by the in-
creasing complexity but comes from our special design.

λ 1/256 1/512 1/1024 1/2048 1/4096
PSNR 30.25 30.29 30.35 30.45 30.40

Table 2. The ablation study on the weight λ of LossEntropy .
Tested on Set8 (σ = 50).

4.2. The Weight of Cross-Entropy Loss

In the first stage training, the weight λ of the cross-
entropy loss LossCE controls the intensity of filtering the
noisy information in the temporal features. As Table 2
shows, if λ is large (e.g., λ = 1/256 or 1/512), some use-
ful information may also be filtered, which degrades per-
formance a bit. On the contrary, if λ is too small ( e.g.,
λ = 1/4096), the temporal features may still contain some
noisy information and performance also drops. The optimal
λ may be related to the noise level, i.e. different noise lev-
els require different λ to achieve the best performance. To
avoid too many parameters tuning, we use 1/2048 as the de-
fault value of λ for other experiments. In the future, we will
investigate how to adaptively set λ according to the noise
level and content characteristic.

4.3. The Effect of Neural Compression-Based Fea-
ture Learning on Clean Features

Our neural compression-based feature learning is used to
filter the noisy and irrelevant information in noisy features,



and it will not discard useful information in the clean fea-
tures. To verify it, we use clean frames from DAVIS train-
val dataset as input and groundtruth to train the individual
NCFL module with adaptive quantization (NCFL-AdapQ)
and the NCFL module without quantization (NCFL-NoQ).
We do not train our complete model because we directly
use the current input frame as the input of restoration mod-
ule. This will enable the restoration module to directly learn
the identity mapping when the input is clean, and make the
temporal feature propagation useless. The results show that
NCFL-AdapQ reaches PSNR 30.37 dB and NCFL-NoQ
reaches PSNR 30.39 dB. The similar results of these two
models show that the proposed adaptive quantization has
little impact on the clean features.

5. More Comparisons on Video Denosing
We compare our method with these baselines: VNL-

Net [7], FastDVDNet [17], EMVD [13], EDVR [18], Ba-
sicVSR [2], and BasicVSR++ [3]. EMVD has several net-
work structure configurations with different complexities.
More specifically, EMVD mainly contains three modules:
the fusion module, the denoising module, and the refine-
ment module. The number of convolutional layers and the
number of the channel of the intermediate features deter-
mine the complexity. The default setting of EMVD is (f-2-
16, d-2-16, r-2-16). ’f-2-16’ means that the fusion module
contains 2 convolutional layers and the number of the chan-
nel of the intermediate feature is 16. ’d-2-16’ represents the
configuration for the denoising module and ’r-2-16’ repre-
sents the configuration for the refinement module. We de-
note the default setting as EMVD-small (EMVD-S, f-2-16,
d-2-16, r-2-16). In addition, we also compare another set-
ting, i.e. EMVD-large (EDVR-L, f-4-64, d-6-256, r-4-64).
The two settings can be found in the Table 1(b) in EMVD
paper [13]. Since the official code of EMVD is not released,
we use the third-party implementation [4].

Quantitative Comparison. In the main paper, we have
shown the results on Set8 testset when compared with pre-
vious neural network-based methods. In addition, to help
us better understand the advantage of neural network-based
method over traditional method, we also test median filter-
ing and summarize the comparison in Table 5. From this ta-
ble, we can see that our method achieves significant quality
improvement over median filtering under all noise levels.

In this supplementary material, we also provide the
PSNR/SSIM results for DAVIS testset [14] in Table 3. As
Table 3 shows, our method outperforms other methods on
high noise levels (σ = 20, 30, 40, and 50) in terms of PSNR
and outperforms them on all noise levels in terms of SSIM.
With the increasing of noise level , the difference of perfor-
mance between our method and BasicVSR++ also becomes
larger. When σ is 10, 20, 30, 40, and 50, the difference of
PSNR between our method and BasicVSR++ is -0.04, 0.03,

0.03, 0.10 and 0.18, respectively. These results demonstrate
that the advantage of our neural compression-based feature
learning framework is greater when the noise intensity is
larger.

Qualitative Comparison. We show another two visual
examples in Fig. 5 and Fig. 6. As Fig. 5 shows, other meth-
ods cannot restore the bridge deck texture well under this
challenging case. The results of FastDVDNet and EMVD
suffer from serious distortion and are quite blurry. The
results of EDVR, BasciVSR, and BasicVSR++ show bet-
ter visual quality but the bridge deck textures are still not
clear. By contrast, through leveraging better temporal fea-
ture alignment and neural compression-based feature learn-
ing, our method restores clearer and more accurate bridge
deck textures. As Fig. 6 shows, the grass patterns are
smoothed in the results of FastDVDNet, EMVD, EDVR,
BasicVSR, and BasicVSR++. The results of our method
are clearer and the restored grass patterns are more similar
to the target.

6. More Comparisons on Video Deraining

We compare our method with prior SOTA video de-
raining methods, including MS-CSC [10], SE [19], Spac-
CNN [6], FastDerain [9], J4RNet-P [12], FCRVD [21],
RMFD [22], and BasicVSR++ [3]. In the main paper, we
present the results on RainSynAll100 [22] and RainSyn-
Complex25 [12]. In this supplementary material, we report
the results on NTU-Rain [6] and RainSynLight25 [12]. As
Table 4 shows, BasicVSR++ beats RMFD in terms of PSNR
and SSIM on both testsets. Compared with BasicVSR++,
our method even brings PSNR gain of 0.74 dB and SSIM
gain of 0.0035 on NTU-Rain, which shows the benefit of
the noise-robust features.

We show visual comparison in Fig. 7. As Fig. 7 shows,
BasicVSR++ could not remove the rain streak well and suf-
fers from severe artifacts. RMFD could remove rain streak
completely but its results suffer from serious color shading.
Instead, our method could produce clearer and visual pleas-
ing results.

7. Visual Comparisons on Video Dehazing

Since the code of CG-IDN [24] is not released, we com-
pare our method with BasicVSR++ [3] and MBSDN [8] in
Fig. 8. As Fig. 8 shows, the result of BasicVSR++ con-
tains many artifacts and suffers from poor visual quality.
The result of MBSDN is cleaner but its color temperatures
are inconsistent with the target. Instead, our method could
produce visual pleasing result with accurate color tempera-
tures.



σ VNLnet [7] DVDNet [16] FastDVDNet [17] EMVD-L [13] EMVD-S [13] EDVR [18] BasicVSR [2] BasicVSR++ [3] Ours
10 35.83/0.9473 38.13/0.9679 38.71/0.9702 38.57/0.9695 36.90/0.9512 39.23/0.9732 39.55/0.9758 39.71//0.9761 39.67/0.9782
20 34.49/0.9231 35.70/0.9470 35.77/0.9468 35.39/0.9413 33.58/0.9023 36.33/0.9516 36.65/0.9558 36.75/0.9565 36.78/0.9596
30 33.42/0.9086 34.08/0.9255 34.04/0.9252 33.89/0.9210 31.94/0.8878 34.62/0.9311 35.07/0.9389 35.21/0.9403 35.24/0.9435
40 32.32/0.8974 32.86/0.9040 32.82/0.9047 32.40/0.8941 30.66/0.8508 33.40/0.9113 33.73/0.9207 33.96/0.9229 34.06/0.9267
50 31.43/0.8761 31.85/0.8829 31.86/0.8851 31.47/0.8747 29.88/0.8273 32.41/0.8937 32.81/0.9046 32.93/0.9056 33.11/0.9107

GFLOPs - - 665 1106 5 3089 2947 3402 771

Table 3. PSNR/SSIM comparison with SOTA video denoising methods on DAVIS testset. The best performance is highlighted in red (1st
best) and blue (2nd best). Our method achieves the best SSIM on all noise levels.

Noisy FastDVDNet EMVD-L EDVR

BasicVSR++ Ours TargetBasicVSR

Figure 5. The denoised results of hypersmooth from Set8 testset with noise variance 50. Best viewed in color.
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Figure 7. The results of 0995 video from RainSynAll100 testset . Best viewed in color.
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Figure 8. The results of W002 video from REVIDE testset. Best viewed in color.
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