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A. The Primary Motivation
As we stated in the above manuscript, the objective of

constructing the sensitivity map is to measure the variance
of the recognition result when each point encounters the im-
perceptible perturbation. The reasons for why we use tan-
gent plane gradients are:

First, the saliency map [19] is not effective for point per-
turbing attack we explored. It measures how the recogni-
tion result changes when we drop a point, which could be
viewed as a large step perturb. While our perturbing attack
relies on a proper measure of the change when we slightly
perturbed the point. For example, on query-based black-box
attack on PointNet++, saliency map obtains 92.6% ASR and
987.9 average queries(A.Q), while our method outperform
it with 95.8% ASR and 417.0 A.Q under the same settings.

Second, from the perspective of invisibility, the typi-
cal gradient map does not have a perturb direction con-
strain, so the perturbed points are always out of the surface,
which is easy to be detected or removed (Figure 1(b) of our
manuscript). On the contrary, if adding perturbations along
the tangent plane, it would be more invisible.

So we realize our tangent gradient map by projecting the
gradient map to the tangent planes, which concerns both
adversary effectiveness and invisibility.

B. Limitations and Social Impacts
One of the limitations of shape-invariant adversarial at-

tack is its unsatisfactory applicability on surfaces with large
curvature. On the one hand, in Eq.(1) of our main paper,
the normal vector simulation about the investigated point
with limited neighbor points might be not entirely accu-
rate, especially when this point is located at the surface with
large curvature (e.g., the edges or corners of 3D shapes).
On the other hand, since we design the perturbation along
the tangent plane as the “explicit constrain” to maintain our
claimed shape invariance, the perturbed point is still pos-
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sible to escape from the surface if this position has very
large curvature. This limitation partially breaks our shape-
invariant assumption, leading to the imperfect visual qual-
ity. However, the solution to alleviate this problem is also
obvious. We can adopt much smaller step size and more
attack iterations (i.e., more time budget) to realize attack.

The main social concerns about shape-invariant point-
cloud attack might be that it poses a threat to the security
of autonomous driving. The attacker can materialize the
shape-invariant adversarial point clouds with 3D printing
or combine the query-based attack with LiDAR spoofing
attack [1, 11] to fool the point cloud recognition module
of self-driving cars, leading to the traffic accidents. But
the prerequisite of successfully realizing such attacks is
that attacker needs to get the model output (e.g., at least
the predicted logits) to guide his/her attack loops. There-
fore, unless pure black-box transfer-based attack, the self-
driving can still defend itself by robustness enhancement
and data leakage reduction based on technologies like strict
encryption. From the positive perspective, as elaborated
in our main paper (i.e., Intro and Social Impact section),
our method provides a more effective evaluation method for
the adversarial robustness of point cloud recognition mod-
els, especially for black-box requirement since the common
protection agreement of trade secrets in current industry. In
other words, it facilitates the development of the researches
on improving 3D recognition robustness.

C. Proof of Theorem 1

Proof. First, we need to clarify the translation relationship
between the original coordinate system origin O and the
new coordinate system origin O′. As illustrated in Figure
3 in our main paper, since O′ is the projection of O on the
tangent plane Ωi, so

−−→
O′O is parallel to the normal vector

ni. Thus the translation relationship can be calculated by

−−→
OO′ = kni ⇔ O(0, 0, 0),O′(kni1, kni2, kni3), (1)
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where k = (pi · ni) is the module length of vector OO′.
Then, with the coordinate of O′, we can easily obtain the

vector
−−→
BA and

−−→
CO′ that define the directions of the trans-

formed axis x′ and y′ respectively. Based on the position
representations in Eq.(3) of our main paper, we have

−−→
BA = (

k

ni1
,− k

ni2
, 0), (2)

−−→
CO′ = (kni1, kni2, kni3 −

k

ni3
). (3)

Therefore, if we define the standard orthogonal coordinate
bases of the original coordinate system O − xyz as −→x , −→y
and −→z , the standard orthogonal coordinate bases −→x ′, −→y ′

and −→z ′ of the new coordinate system O′ − x′y′z′ can be
formulated as

−→x ′ =

−−→
BA

|
−−→
BA|

, −→y ′ =

−−→
CO′

|
−−→
CO′|

, −→z ′ =

−−→
O′O

|
−−→
O′O|

, (4)

−→x ′ =
( ni2√

1− n2
i3

)−→x +
(
− ni1√

1− n2
i3

)−→y + 0−→z , (5)

−→y ′ =
( ni1ni3√

1− n2
i3

)−→x +
( ni2ni3√

1− n2
i3

)−→y (6)

+
(
−
√
1− n2

i3

)−→z , (7)
−→z ′ = ni1

−→x + ni2
−→y + ni3

−→z . (8)

The above relationships between the bases of old/new or-
thogonal coordinate system reveal the rotation transforma-
tion fir of axes. Hence we can reorganize the above equa-
tions to get the translation transformation matrix, i.e.,

Ri =


ni2√
1−n2

i3

−ni1√
1−n2

i3

0

ni1ni3√
1−n2

i3

ni2ni3√
1−n2

i3

−
√

1− n2
i3

ni1 ni2 ni3

 , (9)

which denotes the rotation transformation from O− xyz to
O′ − x′y′z′. Note that the denominator

√
1− n2

i3 is equal
to 0 when ni3 = 1. Thus we further consider the limit for
this boundary case when ni1 = ni2 = 0 and ni3 = 1, i.e.,

lim
|ni3|→1

Ri =

 1/
√
2 −1/

√
2 0

ni3/
√
2 ni3/

√
2 0

0 0 ni3

 . (10)

Likewise, the translation transformation matrix can be ob-
tained from the origin shift

−−→
OO′ as

Ti = (pi · ni)ni, (11)

which denotes the translation transformation from O−xyz
to O′−x′y′z′. To get the transformed coordinate of pi (i.e.,
its coordinate in the new coordinate system O′−x′y′z′), we

first shift it according to
−−→
OO′ and then rotate it, which can

be formulated as

p′
i = Ri(pi + Ti). (12)

By contrast, we can first apply rotation and then apply trans-
lation to realize the reverse coordinate transformation by

pi = R⊤
i p

′
i − Ti. (13)

When we combine the above two equations, we can get

p′
i = Ri(pi + Ti) = Ri(R

⊤
i p

′
i) = (RiR

⊤
i )p

′
i, (14)

where we can get RiR
⊤
i = I . In this way, the l2-norm of

the rotation matrix R⊤
i can be determined by the maximal

eigenvalue denoted by σmax, i.e.,

∥R⊤
i ∥22 = σmax(RiR

⊤
i ) = 1. (15)

Thus the proof of Theorem 1 is completed.

D. More Visualization Results
We provide more visual results for the proposed point-

cloud sensitivity maps in Figure 1.

E. More Experimental Results
(1). White-box Performance on ShapeNetPart

Except for ModelNet40 [13], we also compare the pro-
posed shape-invaraint white-box attack with baselines on
ShapeNetPart [18]. We train three popular point cloud mod-
els (i.e., PointNet [2], PointNet++ [10] and CurveNet [15])
on ShapeNetPart for 150 epochs. Initially, all of their clean
recognition accuracy is nearly 99%. Similarly, we adopt
the same attack settings with the settings clarified in our
main paper (Sec 4.3). As the results listed in Table 1, our
method can still achieve the low Chamfer distance [4] while
maintaining over 90% attack success rate (ASR). As an
gradient-based iterative attack method, it is hard-won for
our method to achieve high ASR (effectiveness), low ge-
ometry distances (invisibility) and low A.T (efficiency) at
the same time.
(2). Black-box Performance with PointNet as Hw

Since the results reported in the main paper are obtained
by utilizing DGCNN [12] as the surrogate model, the read-
ers may be just wondering that what if using the weaker
model (e.g., PointNet [2]) as the surrogate model? As
showcased in Table 2, even when we take PointNet as the
weak surrogate model to implement our query-based attack,
the attack performance just has few degradation. Specifi-
cally, when attacking on three of the most advanced point
cloud recognition models including SimpleView [5], PA-
Conv [16] and CurveNet [15], our performance on query
cost and visual quality are still much better than SimBA [7]
and SimBA+ [17] though few ASR is sacrificed.
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Figure 1. Visualization results of the proposed point-cloud sensitivity maps obtained on CurveNet.

Attack Defense
PointNet [2] DGCNN [12] CurveNet [15]

ASR↑ CD↓ HD↓ A.T↓ ASR↑ CD↓ HD↓ A.T↓ ASR↑ CD↓ HD↓ A.T↓
(%) (10−4) (10−2) (s) (%) (10−4) (10−2) (s) (%) (10−4) (10−2) (s)

I-FGM [6] - 99.9 6.68 3.88 1.05 97.8 24.46 3.60 2.12 98.2 16.20 3.77 11.68
MI-FGM [3] - 97.5 21.54 4.88 1.08 60.2 114.09 5.51 2.11 81.1 80.92 5.42 11.56
PGD [9] - 99.9 6.63 3.88 1.06 97.8 24.26 3.61 3.16 98.2 16.33 3.77 11.58

3d-Adv [14] - 100.0 7.30 3.75 5.09 100.0 15.43 5.13 19.10 100.0 15.47 3.59 121.94
AdvPC [8] - 83.6 10.98 4.43 2.73 95.4 13.42 3.24 7.83 68.6 16.17 3.74 56.64
Ours - 95.2 3.59 3.46 1.26 93.5 9.08 2.95 3.69 90.9 8.29 3.58 21.41

Table 1. Quantitative comparison on ShapeNetPart between our white-box shape-invariant attack and different white-box attacks, on attack
success rate (ASR), Chamfer distance (CD), Hausdorff distance (HD) and average time budget for each adversarial point cloud generation
(A.T), where Chamfer distance is multiplied by 104 and Hausdorff distance is multiplied by 102 for better comparison.

Attack
SimpleView [5] PAConv [16] CurveNet [15]

ASR↑ A.Q↓ CD↓ HD↓ A.T↓ ASR↑ A.Q↓ CD↓ HD↓ A.T↓ ASR↑ A.Q↓ CD↓ HD↓ A.T↓
(%) (times) (10−4) (10−2) (s) (%) (times) (10−4) (10−2) (s) (%) (times) (10−4) (10−2) (s)

SimBA [7] 100.0 119.5 8.65 5.35 0.61 100.0 73.2 4.51 4.93 0.36 100.0 114.5 4.67 4.93 13.51
SimBA+ [17] 100.0 115.8 10.01 11.64 0.69 100.0 67.4 5.02 9.58 0.36 100.0 98.9 5.29 9.76 12.94
Ours-D 100.0 101.6 7.38 4.77 0.54 100.0 53.9 3.89 4.58 0.31 99.9 81.5 3.97 4.59 8.77
Ours-P 98.6 105.7 8.03 4.88 0.57 99.7 55.3 4.60 4.77 0.30 98.9 86.6 4.51 4.78 9.36

Table 2. Quantitative comparison on ModelNet40 between our shape-invariant black-box attack and different black-box attacks with step
size 0.32, on attack success rate (ASR), average query cost (A.Q), Chamfer distance (CD), Hausdorff distance (HD) and average time
budget (A.T), where “Ours-D” means choosing DGCNN as surrogate model Hw and “Ours-P” means choosing PointNet as Hw.
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