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1. Dataset Labeling

In ACA dataset, each image is labeled by a senior oph-
thalmologist. A two-stage check is performed to ensure
the quality of labeling. In the first stage, 5 undergraduates
with medical and non-medical backgrounds are trained to
perform the check. The check quality is controlled based
on the following standards: (1) the image should not con-
tain severe resolution reductions or significant artifacts; (2)
the ACA structure should be complete; (3) the image’s il-
lumination should be acceptable (i.e., not too dark or too
bright); (4) the image should be focused on the four struc-
tures. In the second stage, there are 3 examiners to perform
the check. One is a board-certified ophthalmologist with
more than 10 years’ experience and the other two are post-
graduate ophthalmology trainees who have passed a pre-
training test. The two postgraduate ophthalmology trainees
label each image separately according to the Scheie angle
depth system. Then, the ophthalmologist makes the final
decision on each image.

2. Dataset Details

Figure 1. Example of cropped ACA images by YoLo detector. The
top row is N2 and the bottom row is N4.
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All datasets are randomly divided into training, valida-
tion and testing sets. Training/validation sets are used to
develop the methods, while testing sets are used for final
evaluation. Note that the testing sets are not used during
method development in any way.

2.1. ACA dataset

ACA dataset are first randomly divided into a train-
ing/validation set, and a hold-out testing set. As shown in
Figure 1, to eliminate the influence of background noise,
YoLo detector is applied to automatically crop the target re-
gion of SL, TM, SS and CBB. The image size ranges from
215×765 to 1272×3264 after croping. To balance the clas-
sification performance and computational cost, we resize all
the images to 700× 2100 using bilinear interpolation.

As described in the main paper, we partitioned the
dataset into a training set (80%) and a testing set (20%)
based on a random seed of 72. We have 802 images for
training and 197 for testing. Besides, the GCNet frame-
work is designed for multi-task image classification with
image-level annotations and partial pixel-level annotations.
We have 999 image-level labels and 100 pixel-level labels.
In the training part, we shuffle the 802 images and select
642 for training and 160 for validating using random seed
42. During training, we have 642 images with image-level
labels and 83 images with pixel-level labels among a total
of 642 training samples; We have 160 images with image-
level labels and 17 images with pixel-level labels among a
total 160 validation samples. In the testing process, we have
197 images with whole image-level labels but no pixel-level
labels.

2.2. REFUGE dataset

REFUGE dataset has 1200 images with 10% of glau-
coma (positive) images and 90% for non-glaucoma (nega-
tive) images. We integrate the training set and validation
set. In the training process, we shuffle the 800 images and
select 640 for training and 160 for validation using random
seed 42. Although all the images in the REFUGE dataset
have whole image-level labels and whole pixel-level labels,



we randomly select 100 images with pixel-level labels from
the integrated 640 images, and among these 100 images, 83
of them are for training and 17 for validation.

2.3. SIGF dataset

SIGF dataset is randomly divided into training, valida-
tion and testing sets. It consists of 3,671 images, 71.82%
for training, 9.15% for validation and 19.03% for testing.
Positive samples account for 4.16% of the entire training
set and the rest are negative. Images are labeled to positive
glaucoma according to the retinal nerve fibre layer defect,
rim loss and optic disc hemorrhage [2]. The main basis for
doctors to judge glaucoma are these three feature. Thus, we
randomly select 58 of the positive sample and 103 negative
sample from the training set to label some pixel-level an-
notations by trained volunteers. Then, the ophthalmologist
makes the final check on each image. Pixel-level annota-
tions consist of three components: optic cup, optic disc and
background. The retinal nerve fibre layer defect, rim loss
and optic disc hemorrhage near the optic cup and optic disc
may be noticed by the network through pixel-level annota-
tions.

3. Training Details
When training the GCNet framework on two different

datasets, some settings are the same and some are different.
On the one hand, we use the same SGD optimizer with mo-
mentum set to 0.9 and a weight decay of 0.0005. We initial-
ize the backbone network weights by the ResNet50 weights
trained on the ImageNet dataset. We set the initial learn-
ing rate 1e-3 and mini-batch size of 4. Then, we decay the
learning rate with proportional decline. Data augmentation
is adopted to expand the training dataset by pepper noise
and horizontal flipping. After each epoch, we save the cur-
rent best-performing model weights by validating the model
on the validation set. On the other hand, our experiment is
optimized by a total loss composed of three losses: classifi-
cation loss Lcla, segmentation loss Lseg and embedding loss
Lem.

• On the ACA dataset. We use standard cross-entropy
loss as Lcla. Besides, according to the original size of
two images, the ACA dataset are resized into 128×256
resolution to train our model. We use random pepper
noise and horizontal flipping as data augmentation. We
set α = β = γ = 1.0, λ = ρ = 1.0, and ω = 0.01
using the ACA validation set.

• On the REFUGE dataset. We use binary cross-entropy
loss as Lcla. The REFUGE dataset are resized into
256 × 256 with the full use of the computer mem-
ory. We use random pepper noise, vertical flipping
and horizontal flipping as data augmentation. We set

α = β = γ = 1.0, λ = ρ = 1.0, and ω = 0.01 using
the REFUGE validation set.

• On the SIGF dataset. Because of the extreme im-
balanced class distributions of SIGF between positive
and negative sample, we use focal loss as Lcla. The
SIGF dataset are resized into 224 × 224. We use
random pepper noise, vertical flipping and horizon-
tal flipping as data augmentation. We set α = 1.0,
β = γ = 0.1,λ = ρ = 1.0 and set ω = 0.01 using the
SIGF validation set.

4. Baselines
All tested baselines use the following settings unless oth-

erwise stated.
In the training process, we use the SGD optimizer with

learning rate of 1e-3 with proportional decay. Then, we use
the same MLP (as the main classifier) as Equation 5 to com-
plete the evaluation of five levels on the ACA dataset. Note
that dropout layers are used in MLP to alleviate overfitting.

In this paper, we compare GCNet with other state-of-the
art methods on two datasets: ACA dataset and REFUGE
dataset. Six baselines used in the experiments can be di-
vided into two categories: traditional methods and weakly-
supervised based methods, which are described as follows.

4.1. Traditional methods

In this paper, we use VGG, GoogLeNet, and ResNet-50
as traditional deep learning methods.

• VGG [5]. We initialize the VGG weights trained on
the ImageNet dataset and update the model weights on
the output layer only.

• GoogLeNet [7]. In our experiment, we use inception
v3 without auxiliary classifiers. We freeze the first 27
layers and train the model on the rest layers and the
main classifier.

• ResNet-50 [1]. We initialize the VGG weights trained
on the ImageNet dataset. Then we freeze the first con-
volutional layer and layers 1 and 2 and train on the rest
layers.

4.2. Weakly-supervised based methods

Consistency regularization and pseudo-labeling are two
common strategies in weakly-supervised based methods.

• FixMatch [6] uses both consistency regularization and
pseudo-labeling to optimize its framework. In our ex-
periments, weak augmentation is a standard random
pepper noise and horizontal flipping. For strong aug-
mentation, we experiment with “RandAugment” as
mentioned in the original paper. We use cross-entropy



loss for pseudo pixel-level labels and dice loss for real
pixel-level labels. We set τ = 0.7 which is a scalar
hyperparameter denoting the threshold of retaining a
pseudo-label.

• CCT [3] uses consistency regularization to obtain sim-
ilar output distribution between the main decoder pre-
dictions and those of the auxiliary decoders. In our
experiments, we add a classifier to CCT after encoder
for ACA evaluation. We use the cross-entropy loss for
pixel-level labeled data and mean squared error loss
for pixel-level unlabeled data to measure distance.

• UPS [4] is an uncertainty-aware pseudo-label selection
framework which aims to improve the performance
of classification. The contributions of UPS include
negative pseudo label selection and confidence-based
pseudo labels selection. We use UPS for segmenta-
tion in our experiments. To generate confidence-based
pseudo labels, dropout layers are moved to decoder
from encoder. As described in UPS, τp and τn are the
confidence thresholds for positive and negative pseudo
labels, κp and κn are uncertainty thresholds. In our
experiments, we set τp = 0.75, τn = 0.05, κp =
0.05, κn = 0.005. We use Equation 9 to calculate
loss between dense prediction and positive pseudo la-
bel while for negative pseudo labels, we define:
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The total loss of this segmentation module is:

Lseg = Lu
dice + Lu′

dice . (2)
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