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In this supplementary material, more details about our
methods are presented first. Then we report additional ex-
perimental results to further validate our network design.
At last, we show more qualitative detection results, some
failure cases and feature visualizations.

1. Architecture of the Classification Head
The classification head is mainly used to generate

TCAMs, it can be any existing WSTAL methods. To gen-
erate high quality TCAMs and improve the lower bound of
our method, we use the recent method FAC-Net [6] as the
classification head for its simple pipeline and strong perfor-
mance.

We simply revisit the FAC-Net in this section. As the
most weakly supervised methods, FAC-Net is based on
the fixed-weight I3D backbone network, on which a small
learnable network (e.g., 1× 1 convolutional network) is ap-
pended to learn the video snippet features F ∈ Rl×d. Be-
sides, FAC-Net contains a foreground classifier Wf and an
action classifier Wa. Given the video snippet features F,
there are three classification heads are appended on. The
first classification head is a class-agnostic attention (CA)
head. It first calculates the cosine similarity between Wf

and F to get the foreground attention weights λf ∈ Rl. The
foreground attention weights are used to aggregate snip-
pet features F into a video level feature F̄, which is used
to calculate the video-level prediction with Wa. The sec-
ond classification head is a multiple instance learning (MIL)
head. It calculates the cosine similarity between Wa and F
to obtain the snippet-wise class logits S ∈ Rl×(c+1). The
TCAMs T and the class-wise attention scores λw are ob-
tained by applying softmax to S along category dimension
and temporal dimension, respectively. The video-level pre-
diction of the MIL head is obtained by aggregating S with
λw. There is another classification head, namely class-wise
foreground classification head. However, as shown in Fig-
ure 1, we do not use this head in our method, since the for-
mer two heads already enable our method to achieve a high
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Figure 1. The overview of the classification head used in our
method, including a class-agnostic attention head and a multiple
instance learning head in FAC-Net [6].

baseline performance. Therefore, in our method, for each
classification head, there are only two video-level classifi-
cation losses, which corresponds to the CA branch and the
MIL branch, respectively. We weightedly combine the two
video-level classification losses as Lcls = Lca + γLmil,
where γ denotes the balancing hyper-parameter, which is
set as 0.2 in our method.

There are some other modifications upon the FAC-Net.
First, we use the sigmoid rather than the softmax function to
obtain normalized foreground scores. This setting enables
our method to use the attention normalization term [14] to
obtain highly confident representative snippets. Second, we
do not use the hybrid attention strategy, which is designed
to alleviate the discrepancy between classification and de-
tection.

2. Bipartite Random Walk Module

First, we briefly introduce the random walk operation.
Random walks are one of the most widely known and used
methods in graph theory [9], which led to the development
of PageRank [10], personalized PageRank [1], DeepWalk
[12], DeeperGCN [8], etc. Let G denotes an undirected
graph. There is a transition matrix A of the graph G. Given
the feature F of graph nodes, the random walk operation
can be done via a simple matrix multiplication operation
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F(1) = AF.
In [2, 13], they use the random walk operation to propa-

gate information between image pixels or probe images for
semantic segmentation and person re-identification. They
propose to weighted combine AF with the input F to make
F(1) be not deviate too far away from F, which can be for-
mulated as

F(1) = wAF+ (1− w)F, (1)

where w is a balancing hyper-parameter. This process can
be conducted multiple times until convergence

F(t) = wAF(t−1) + (1− w)F. (2)

As t → ∞, there is an approximate inference as

F(∞) = (1− w)(I− wA)−1F, (3)

where I denotes an identity matrix.
As state in our main manuscript, at the t-th iteration, the

bipartite random walk operation can be formulated as (for
simplicity, we omit the upper-script *, which is a or e corre-
sponding to the online representative snippets or the offline
representative snippets)

µ(t) =wNorm1(Z)
⊤F(t−1) + (1− w)µ(0), (4)

F(t) =wZµ(t) + (1− w)F(0). (5)

Substitute Equation (4) into Equation (5), we can obtain

F(t) = w2ZNorm1(Z)
⊤F(t−1) + (1− w)wZµ(0)

+(1− w)F(0)

= w2ZNorm1(Z)
⊤F(t−1)

+(1− w)(wZµ(0) + F(0)). (6)

In the following equations, we denote ZNorm1(Z)
⊤ as R.

Therefore, expanding Equation (6) leads to

F(t) = (w2R)tF(0)+(1−w)

t−1∑
i=0

(w2R)i(wZµ(0)+F(0)).

(7)
As t → ∞, since elements in R and w ∈ [0, 1],

lim
t→∞

(w2R)tF(0) = 0. (8)

For
∑t−1

i=0(w
2R)i, the matrix series can be expanded as

lim
t→∞

t−1∑
i=0

(w2R)i = (I− w2R)−1. (9)

Therefore, Equation (6) can be formulated as

F(∞) = (1− w)(I− w2ZNorm1(Z)
⊤)−1(wZµ(0) + F(0)).

(10)

Table 1. Evaluation of the attention normalization loss.

Method Latt AVG

Baseline % 35.6
" 36.8

+ representative snippets % 40.2
" 40.1

+ pseudo label supervision % 42.0
" 44.2

+ memory bank % 42.5
" 45.1

When µ(0) = F(0), that is, the propagation is di-
rectly conducted between the features of F, there exists
Norm1(Z)

⊤ = Z, because the bi-directional affinities be-
tween F(0) and F(0) should be the same. At this time, Equa-
tion (10) can be rewrote as

F(∞) = (1− w)(I− w2Z2)−1(wZF(0) + F(0)),

= (1− w)(I− wZ)−1(I+ wZ)−1(wZF(0) + F(0)),

= (1− w)(I− wZ)−1F(0),

(11)

which is the same as Equation (3).

3. More Implementation Details
For each snippet, a 2048-d feature is extracted by the I3D

pre-trained on Kinetics-400 [3]. The following one 1 × 1
convolutional layer outputs 2048-d features. Besides, the
number of online representative snippets for each video is
8, while the number of representative snippets for each class
in the memory bank is 5.

4. Additional Ablation Study
In this section, we provide more ablation studies on the

THUMOS14 dataset. Unless explicitly stated, we do not
use the memory bank in these methods.
Attention normalization loss. In Table 1, we demon-
strate the effectiveness of the attention normalization loss.
As we can see, the attention normalization loss plays an im-
portant role in our method. It improves the performances of
our baseline model as well as the full model. Besides, we
can see that the full model without the attention normaliza-
tion loss drops evidently, indicating that the attention nor-
malization loss is essential to obtain useful representative
snippets.
Representative snippet summarization. Here, we pro-
vide more experimental results to evaluate the representa-
tive snippet summarization. In our method, we generate
the representative snippets regardless of the foreground or
background. Since the classification head generates fore-
ground scores, we can also force the model to only gener-
ate representative snippets of the foreground or background.



Table 2. The detection results of different variants of generating
representative snippets.

Method mAP @ IoU
0.3 0.5 0.7 AVG

Baseline 45.2 29.9 10.2 36.8
Full model w/o memory bank 54.5 37.3 12.5 44.2
Foreground representative snippet 52.2 33.2 11.7 41.8
background representative snippet 51.5 30.9 8.9 40.2
representative snippets of high scores 49.2 30.2 8.5 39.2
video-wise memory bank 56.2 38.2 12.4 45.0

Specifically, given the foreground scores Sf of the main
branch, we first modulate the video snippet features F with
Sf as Ff = FSf , and then use the EM attention to obtain
the representative snippets based on the modulated features
Ff . We update the foreground features Ff by the bipar-
tite random walk module, and finally summed up with the
background features Fb = F(1−Sf ) to obtain the updated
features. For the background representative features, we can
follow the same pipeline to obtain the updated features.

In Table 2, we can see that, generating only foreground
or background representative snippets cannot model the
whole video, and thus the pseudo labels of background or
foreground are still inaccurate. Besides, we also try to si-
multaneously generate foreground and background repre-
sentative snippets by selecting the top-k and the bottom-
k representative snippets according to their foreground
scores. As we can see, this way obtains much inferior per-
formance. Since different videos can be differently com-
plex, manually selecting k foreground representative snip-
pets and k background representative snippets is not enough
to capture the variations of the whole video.

Memory bank. In Table 2, we also evaluate a variant of
the memory bank. For each video, we use a separated mem-
ory bank to store all the representative snippets. During
training, we randomly select one video of the same class
from the dataset and retrieve its representative snippets as
the offline representative snippets µe. We update the repre-
sentative snippets in the memory bank by moving average
just as the MoCo [4]. As we can see, this way achieves com-
parable performance with ours, indicating the effectiveness
of propagating knowledge between videos. However, it re-
quires much more memory (about 15×) to store the repre-
sentative snippets.

Representative snippet propagation. Here, we provide
more experimental results to evaluate the representative
snippet propagation, the experimental results are shown in
Table 3. We first evaluate the way of propagating the rep-
resentative snippets, i.e., the feature L1 loss and feature L2
loss in Table 3. Specifically, the feature L1 loss denotes that
we enforce the original video features F and updated fea-
tures Fa to be similar by L1 loss, i.e., Ll1 = ∥F − Fa∥1.
Likewise, the feature L2 loss denotes Ll2 = ∥F − Fa∥22.
We can see that, both methods deteriorate the performance.
This phenomenon may be due to the optimization objective

Table 3. The detection results of different variants of representa-
tive snippet propagation.

Method mAP @ IoU
0.3 0.5 0.7 AVG

Feature L1 loss 52.1 32.1 10.1 41.1
Feature L2 loss 52.7 31.6 10.2 41.2
Concat µa and µe 54.4 35.2 10.6 43.0
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Figure 2. Ablation study on the numbers of representative snippets
µa and µe.
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Figure 3. Ablation study on the number of EM iterations.

of the two loss functions is not the prediction scores but the
features, which cannot directly guarantee consistent scores
to obtain desirable detection results.

Moreover, in our method, we adopt the late fusion man-
ner that combines the predictions of features updated with
the online and offline representative snippets. Here, we also
evaluate the early fusion strategy, which first concatenates
the online and offline representative snippets and then prop-
agate their knowledge to update the original video features
and generate predictions. As we can see, this method ob-
tains inferior performance, which may be due to the domi-
nance of the online representative snippets in propagation.
Branch analysis. In our method, there are three branches,
namely the main branch, the intra-video branch and the
inter-video branch. In Table 4, we show their performance
and MACs. First, we should highlight that inference can
be done with only the main branch. Note that, all existing
methods (including ours) use a fixed I3D (MACs 5500G).
Except I3D’s MACs, with only the main branch, our MACs
(0.44G) is on par with W-TALC [11], but achieves 44.7% on



Table 4. Evaluation of three branches of their detection results and
MACs. There are also the results of two methods W-TALC [11]
and CO2-Net [5] are demonstrated for comparison. All MACs
are calculated with the same video having 100 frames and do not
contain those of the fixed I3D.

Method mAP @ IoU MACs0.3 0.5 0.7 AVG
W-TALC [11] 40.1 22.8 7.6 - 0.42G
CO2-Net [5] 54.5 38.3 13.4 44.6 2.79G
Main branch 55.5 38.2 12.5 44.7 0.44G
+ intra-video branch 55.8 38.2 12.5 45.1 0.48G
+ inter-video branch 55.9 38.2 12.5 45.2 0.90G

THUMOS14, which is still higher than the best model CO2-
Net [5] (44.6%, MACs 2.79G) by 0.1% but with much less
computational cost. Besides, snippet summarization, prop-
agation and the intra-video branch incorporate little over-
head, the main computation cost is the feature extraction
module, which accounts for about 88% of the whole compu-
tation cost. Therefore, after adding the intra-video branch,
our model (45.1%, MACs 0.48G) is still much more effi-
cient than previous methods. Finally, we can see that further
adding the inter-video branch can also improve the perfor-
mance. However, since we do not know the video classes,
we should first perform a round of inference to obtain the
video prediction and then select the inter-video snippets ac-
cording to the predicted video classes for the second round
inference, which significantly increases the inference time.
Therefore, we do not use the inter-video branch during test-
ing in our final solution.

Number of representative snippets. In Figure 2, we
evaluate the impact of the number of representative snippets
on our method. When we evaluate the number of online rep-
resentative snippets µa, we do not adopt the memory bank.
When we evaluate the number of offline representative snip-
pets µe, we fix the number of online representative snippet
as the optimal value. We can see that our method can ben-
efit much from the online representative snippets, even if
we only utilize two Gaussians to model the foreground and
background in the video, the performance is much higher
than the baseline model (average mAP 36.8%). Our method
achieves the optimal performance when the number of on-
line representative snippets is 8. Moreover, our method is
insensitive to the number of offline representative snippets,
even 2 offline representative snippets can enable our method
to achieve a promising performance. Our method achieves
the optimal performance when the number of offline repre-
sentative snippets of each class in the memory table is 5.

Number of EM iterations. In Figure 3, we evaluate the
impact of the number of EM iterations on our method. As
we can see, our method obtains promising representative
snippets by 2 iterations. When the number of EM iterations
increases, the performance slightly drop, which might be
caused by gradient vanishing or explosion.

GT

GT

GT

GT

GT

HammerThrow

ThrowDiscus

VolleyballSpiking

PoleVault

HighJump

Figure 4. Qualitative results on THUMOS14 [7]. We show: 1)
action activation scores, 2) pseudo label scores of ground truth
action, 3) ground truth.
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Figure 5. Some failure cases on THUMOS14 dataset. The two
examples are Volleyball Spiking and Cliff Diving, respectively.

4.1. Qualitative Results

Detection results. We visualize some detection examples
in Figure 4. We provide some frames of the input videos to
show the corresponding actions. As we can see, for videos
containing sparse or dense action instances, the localization
results of our method are complete and accurate.

Failure cases. As shown in Figure 5, the first failure case
of Volleyball Spiking is because the model confuses the
preparing stage of this action, where the actors throw the
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Figure 6. Visualization of the online representative snippets and
the video features of the corresponding videos. The examples from
top to bottom are GolfSwing, CricketShot and Diving, respectively.

volleyball before spiking. Due to the lack of frame-wise
annotations, it is difficult to distinguish such fine-grained
differences. The second failure case of Cliff Diving comes
from the clustered background and small objects. As we
can see, for the first false positive instance, there is a pre-
view segment where an actor is diving into the water. It is
hard to identify those snippets without strong supervisions.
For the undetected instance, the actor is too small to provide
enough appearance and motion cues.

Feature visualization. To attain further insights into the
learned representative snippets, we visualize the online and
offline representatives snippets and video features.

In Figure 6, we visualize the online representatives snip-
pets and the video features of the corresponding videos.
As we can see, the online representative snippets can well
model the variations of the video, so as to describe most of

Figure 7. Visualization of the offline representative snippets and
the video features of the dataset. Dots are the video features and
stars are the offline representative snippets.

the snippets of the same class.
In Figure 7, we visualize the offline representatives snip-

pets and the video features of the dataset. As we can see,
the offline representative snippets usually locate at the dense
area, demonstrating that they can represent the correspond-
ing action class.
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[9] László Lovász. Random walks on graphs. Combinatorics,
Paul erdos is eighty, 2(1-46):4, 1993. 1

[10] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing order
to the web. Technical report, Stanford InfoLab, 1999. 1

[11] Sujoy Paul, Sourya Roy, and Amit K Roy-Chowdhury. W-
talc: Weakly-supervised temporal activity localization and
classification. In ECCV, pages 563–579. Springer, 2018. 3,
4

[12] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deep-
walk: Online learning of social representations. In Pro-
ceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 701–710,
2014. 1

[13] Yantao Shen, Hongsheng Li, Tong Xiao, Shuai Yi, Dapeng
Chen, and Xiaogang Wang. Deep group-shuffling random
walk for person re-identification. In CVPR, pages 2265–
2274. IEEE, 2018. 2

[14] Yuanhao Zhai, Le Wang, Wei Tang, Qilin Zhang, Junsong
Yuan, and Gang Hua. Two-stream consensus network for
weakly-supervised temporal action localization. In ECCV,
pages 37–54. Springer, 2020. 1


