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Overview
This supplementary material consists of the following sections:

• In Section A, we provide more visual comparison results on mesh reconstruction from 3D voxels.

• In Section B, we provide more visual comparison results on mesh reconstruction from single-view
images and the detailed quantitative results of Table 2 (main paper) on each category.

• In Section C, we present more visual results on shape generation with controllability.

• In Section D, we present a TSNE visualization on the learned topology space.

• In Section E, we present failure cases that illustrate the limitations.

• In Section F, we present the implementation details.
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A. More Visual Comparisons on Mesh Reconstruction from 3D Voxels
Figures 1-2 below show more visual results. Comparing the meshes produced by our DT-Net (d) and

others (b-c), we can see that other methods tend to produce less details and miss some of the object parts.
In contrast, our method produces more complete objects that are visually the closest to the targets, and
our reconstructed objects exhibit more tiny local structures and manifest various object topologies.

Figure 1. Visual comparison for mesh reconstruction from 3D voxels (1/2).
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Figure 2. Visual comparison for mesh reconstruction from 3D voxels (2/2).
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B. More Visual Comparisons on Mesh Reconstruction from Single-View Images
Figure 3 shows more visual results reconstructed from single-view images. Comparing the meshes produced by our DT-Net (g) and

others (b-f), we can see that other methods either are hard to adapt objects of various topologies or tend to produce over-smooth or
noisy surfaces with less details. In contrast, our method (g) can produce high-quality meshes, which not only exhibit various topologies
but also describe the surface more faithfully with smooth and sharp features simultaneously. The detailed quantitative results of each
category are shown in Table 1 on next page.

Figure 3. Visual comparison on 3D mesh reconstructions from single-view 2D images.
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Table 1. Detailed quantitative results on mesh reconstruction from 2D images for various object categories. Overall, our method is better on LFD
and comparable with others on distance metrics P2F and CD.

Metric Method
Categories

Mean Plane Bench Cabinet Car Chair Display Lamp Speaker Riffle Couch Table Phone Vessel

LFD(↓)

Explicit
Pixel2Mesh 4056.2 5661.1 5056.1 2323.2 2895.0 3985.7 3643.2 6584.6 2446.8 6552.2 2972.8 3665.9 3442.1 5351.3
AtlasNet25 3880.9 5127.8 4689.4 1887.1 2599.3 3691.3 3401.5 7117.7 2346.9 7352.8 2951.4 3399.0 2681.6 5475.2

TMNet 3765.5 5571.2 4640.8 1865.5 2715.4 3305.6 3335.9 6873.0 2308.4 6848.9 2742.6 3117.8 2554.6 5530.6

Implicit
IM-NET(2563) 3559.2 4846.1 4252.0 1794.8 2391.2 3229.1 3416.8 6934.1 2360.2 6193.6 2732.3 3039.9 2676.5 5259.1

BSP-NET 3426.5 4708.4 3991.7 1624.6 2361.4 3065.9 3091.2 7003.9 2147.6 6144.7 2572.8 2857.5 2601.3 5057.0
Ours 3388.3 4604.1 4012.8 1678.4 2373.0 3067.9 3080.8 6644.2 2237.3 6002.7 2630.8 2787.0 2502.8 5087.5

P2F(↓)

Explicit
Pixel2Mesh 1.903 1.341 1.709 1.972 1.731 2.146 2.033 2.638 2.497 1.374 2.079 1.942 1.371 2.027
AtlasNet25 1.289 0.801 1.072 1.235 1.001 1.444 1.559 2.466 1.826 0.925 1.505 1.288 1.062 1.343

TMNet 1.285 0.821 1.157 1.192 0.929 1.415 1.580 2.256 1.828 1.021 1.423 1.389 1.101 1.327

Implicit
IM-NET(2563) 1.422 0.969 1.390 1.368 0.895 1.558 1.898 2.583 2.114 1.196 1.492 1.543 1.199 1.523

BSP-NET 1.354 0.964 1.265 1.118 0.888 1.521 1.759 2.726 1.786 1.229 1.415 1.337 1.235 1.615
Ours 1.294 0.818 1.146 1.174 0.878 1.474 1.821 2.357 1.939 1.055 1.491 1.319 1.027 1.395

CD(↓)

Explicit
Pixel2Mesh 1.855 1.314 1.793 1.569 1.418 2.112 2.088 3.774 2.691 1.278 1.700 1.964 0.948 1.946
AtlasNet25 1.041 0.397 0.856 0.955 0.624 1.059 1.432 3.028 2.320 0.520 1.091 1.155 0.609 0.806

TMNet 1.149 0.534 0.998 0.933 0.608 1.099 1.431 2.944 2.564 0.761 1.265 1.339 1.073 1.028

Implicit
IM-NET(2563) 1.497 0.770 1.358 1.353 0.799 1.405 2.211 3.713 2.589 0.946 1.642 1.841 1.241 1.379

BSP-NET 1.478 0.713 1.367 1.190 0.866 1.385 1.927 4.182 2.586 0.878 1.629 1.646 1.534 1.420
Ours 1.396 0.618 1.257 1.119 0.648 1.273 1.715 4.398 2.734 0.856 1.789 1.539 0.825 1.512
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C. More results on Shape Generation with Controllability
Our DT-Net learns a disentangled representation of topology and shape, thus enabling novel forms of

3D object manipulations. Figures 4-7 show more generation results with high-level controllability.

Figure 4. More results of remixing the shape and topology of multiple objects. In each table, objects on top
provide the shape codes, whereas objects on the leftmost side provide the topology codes. The remaining objects
are produced by remixing the corresponding shape and topology codes.
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Figure 5. More results of object interpolation from source (left) to target (right), separately on topology (top) and
on shape (bottom). Note the smooth transitions achieved by DT-Net (from left to right).
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Figure 6. Interpolation between objects of different categories.

Figure 7. More results on arithmetic operations between different objects.
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D. TSNE Visualization
To reveal the smoothness and meaningfulness of the learned topology space, we produce a TSNE embedding visualization for ZT

on chairs. As shown in Figure 8 below, we can see that DT-Net can learn a smooth embedding space for objects of varying topological
structures, in which objects of similar topologies are closely clustered.

Figure 8. TSNE visualization of the topology codes for chairs via a TSNE embedding. We put each reconstructed object at its code location.
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E. Limitations and Failure Cases
Figure 9 shows two failure cases that illustrate the limitations of our current approach. First, it is

still very challenging for our method (and also for the existing ones) to reconstruct 3D objects of very
complex topologies and fine structures. Also, our current approach does not consider parts information in
the shape generation. Thus, in the future, we aim to further formulate the topology-aware neural template
in a hierarchical manner and deform it in a part-wise manner for fine-grained 3D reconstructions.

Figure 9. The failure cases.
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F. Implementation Details
In this section, we first present the implementation details for the topology formation module (Sec.

F.1) and the shape deformation module (Sec. F.2). Then, we present more details on the training (Sec.
F.3) and testing (Sec. F.4) of our DT-Net. Lastly, we provide the adoption details for alternative imple-
mentations for our framework (Sec. F.5).

F.1. Implementation of Topology Formation Module

The topology formation network first predicts the parameters from the topology code ZT to construct
various hyperplanes H ∈ RNh∗4 (i.e., ax + by + cz + d = 0). The network is adopted from [2] and is
implemented via a series of MLPs ([256, 512, 1024, Nh ∗ 4]) and each of the first three MLP layers is
followed by a LeakyReLU activation function.

The planes are then grouped to form a set of convexes C by a learnable binary matrix B ∈ RNh∗Nc (a
selective mask) and these convexes are composed to obtain our implicit neural template TI . After that,
we take an occupancy function O(TI , ·) to calculate whether any point p (x, y, z, 1) is inside or outside.
Here, we define Ocon(TI , ·) and Odis(TI , ·) as the occupancy functions in the discrete and continuous
phase, respectively; please refer to Sec. 3.4 of the main paper.

In particular, Odis(TI , ·) first evaluates the distance from p to each hyperplane, and mask out the
hyperplanes that p locates in the negative side through the ReLU activation. Then the occupancy for each
convex can be computed through the matrix multiplication with the binary mask B, and the minimum
operation would then take the union of the convexes. The definition of Odis(TI , ·) is given below:

Odis(TI , p) = min
i∈Nc

(BT
[i,:]relu(Hp))

{
> 0 outside
= 0 inside ,

(1)

where relu(·) is the ReLU activation function. To ease the training difficulty [2], we also introduce a
continuous approximation Ocon(TI , ·) and a sum matrix W ∈ RNc as

Ocon(TI , p) = clip[
∑
i∈Nc

(clip[1−BT
[i,:]relu(Hp)]0,1)]0,1 =

{
1 inside
[0, 1] outside

(2)

≈ clip[
∑
i∈Nc

(Wi ∗ clip[1−BT
[i,:]relu(Hp)]0,1)]0,1 if Wi ≈ 1 ∀i , (3)

where clip[·] clips the value in range [0,1]. During the initial training, we introduce W = 0 to smooth
the gradient flow in the early stage, and W would be promoted to equal to 1 within a few epochs.

F.2. Implementation of Shape Deformation Module

Inspired by [1], we adopt the invertible deformation function g as a solution of a first-order Ordi-
nary Differential Equation (ODE), where the velocity function is parametrized by a deep neural network
ĝ(ZS, ·) conditioned on the shape code ZS . The solution of the ODE can be expressed in the form
pT = g(ZS, p0) = p0 +

∫ T

0
ĝ(ZS, pt)dt. By the existence and uniqueness theorem of Ordinary Differ-

ential Equation proven in [3], there exists unique solution for the ODE under the mild condition that
ĝ(ZS, ·) satisfies the Lipschitz continuous condition. This ensures that the deformation function is a
diffeomorphism and preserves the topology of the neural template.
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For memory saving, we define the deformation vector field ĝ(ZS, ·) conditioned on a latent vector
similar to [10, 4]. We first transform both the shape code ZS and the input coordinates into two fixed
dimension vectors by a single-layer perceptron, respectively, and apply an element-wise product to them.
The multiplied hidden vectors are then transformed to a deformation direction in R3 with three layers of
MLPs (i.e., [256, 256, 256]) and each layer is followed by an ReLU activation function.

F.3. Training Details

We leverage two auto-encoders for image and voxel feature extraction [2] followed by MLPs for
extracting the topology code and shape code (each of 128 dimensions). When training the mesh recon-
struction process from voxels, we adopt a progressive training strategy with occupancy pairs sampled in
increasing resolutions (163, 323, 643), aiming for a speedup in convergence [2]. For each resolution, we
train the network for 300 epochs in the continuous phase. In the discrete phase, we train another 300
epochs in the resolution of 643 directly.

With the sampled occupancy pairs M̂I = {p′i, oi}
Np

i=1 and the inversely-mapped point in the topology
space as pi = g−1(ZS, p

′
i), the loss function for continuous phase consists of three main terms:

Lcon = Lcon
align + Lcon

B + Lcon
W , (4)

where Lcon
align promotes an accurate prediction of the continuous occupancy Ocon(TI , ·) in a least-squares

manner:

Lcon
align =

1

Np

Np∑
i=1

(Ocon(TI , pi)− oi)2 ;

Lcon
B promotes and keeps the binary selection matrix in range [0, 1]:

Lcon
B =

Nh∑
i=1

Nc∑
j=1

max(0,Bi,j − 1)−min(0,Bi,j) ;

and Lcon
W encourages the sum matrix W to converge to a direct sum where W = 1, this term vanishes

empirically within the first few epochs:

Lcon
W =

Nc∑
i=1

|Wi − 1| .

The loss term for the discrete phase contains two major parts:

Ldis = Ldis
align + Ldis

B , (5)

where Ldis
align ensures the correctness of the discrete occupancy Odis(TI , ·):

Ldis
align =

1

Np

Np∑
i=1

[
oi ∗max(Odis(TI , pi), 0) + (1− oi) ∗ (1−min(Odis(TI , pi), 1))

]
;
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and Ldis
B enforces the binary selection matrix to be either close to 0 or 1, with hyper-parameter λ=0.01:

Ldis
B =

Nh∑
i=1

Nc∑
j=1

[Bi,j < λ](|Bi,j|) + [Bi,j ≥ λ](|1−Bi,j|) .

For reconstructions from single-view images, we reuse the pre-trained model from voxels and further
train the image encoder (ResNet [5]) for 1,000 epochs to predict the latent codes. The batch size of
all training phases is set as 32 and the learning rate is 0.0005 with the Adam optimizer [6], while the
number of hyperplanes Nh = 4096 and convexes Nc = 32. The training of the auto-encoding task for
the continuous and discrete phases in total takes around 7 days on a cluster of eight RTX3090 GPUs,
and the training of the image encoder takes around 12 hours.

F.4. Testing Details

After training the DT-Net, we can obtain the topology mesh TE as a union of the learned convexes. To
obtain the final meshME , a straightforward way is to directly apply the deformation g to each vertex of
TE; however, this might lose the geometric details as the shape refinement module learns a continuous
deformation on all spatial locations simultaneously. For simplicity, we address this by uniformly subdi-
viding the topology template before applying the deformation. Specifically, we subdivide each face of
TE up to five times to obtain more vertices. By then, we can obtainME with continuous and smooth
features from the deformation procedure.

F.5. Alternative implementations for Topology Formation Module and Shape Deformation Module

We have explored the usage of alternative primitives to compose our neural topology-aware templates,
including cuboids [9] and superquadrics [8]. For the cuboid template, we first use multi-layer perceptions
to predict a set of scale vectors s ∈ RN∗3, a set of quaternions q ∈ RN∗4 for rotation, and a set of
translation vectors v ∈ RN∗4, where N is the number of cuboids (N = 32). For the superquadric
template, we also predict a set of scale vectors s ∈ RM∗3, a set of rotation vectors represented by
quaternions q ∈ RM∗4, a set of translation vectors v ∈ RM∗4, and a set of norm vectors e ∈ RM∗3 for
the smoothness of superquadrics, where M is the number of superquadrics (M = 64).

For calculating the occupancy, we first transform a query point p(x, y, z) into the canonical space of
the ith cuboid or superquadric, denoted as di:

di = RT
i (p− vi) (6)

where Ri is the rotation matrix produced from qi (i.e., the ith quaternion).
The occupancy calculation in terms of the cuboid representation can be expressed as

Ocuboid(TI , p) = σ(−1

δ
LogSumExp(−δ max

j∈1,2,3
(|dij| − si)))

{
≥ 0.5 outside
< 0.5 inside .

(7)

The occupancy calculation in term of the superquadric representation can be expressed as

Osuper(TI , p) = σ(−1

δ
LogSumExp(−δ(

∑
j∈1,2,3

(
dij
si
)

2
ej − 1)))

{
≥ 0.5 outside
< 0.5 inside .

(8)
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where σ(·) is the sigmoid activation; LogSumExp computes a soft minimum of the occupancy values
among all the primitives; and δ is a parameter for controlling the hardness of the minimum. We empiri-
cally set δ as 100.0.

With these occupancy functions, the least-squares loss is used to promote the accurate prediction for
the ground-truth occupancy.

When using invertible neural network (INN) [7] to implement our shape deformation module, we
directly adopt the default settings; please find more details in the original paper [7].

Figure 10 shows another example to use other primitives, including superquadrics (a) and cuboids (b),
vs. our convexes (d) for composing the topology-aware neural templates and INN [7] (c) to implement
the shape deformation module; see the qualitative results in the table below.

Figure 10. Visualization of another example for alternative implementations, and the corresponding evaluation
results for all chairs.
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