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We provide the following supplementary materials
(SMs) as support of our theoretical and empirical claims.
This SM is organized as follows.

Appendix A provides all the implementation details. We
first provide the pseudocode for the online sampling algo-
rithm in Appendix A.1 that allows for polarity sampling to
be performed rapidly for real-time applications. Along it,
we provide further details on the effect of the two hyper-
parameters of polarity sampling that are N and k, namely
the number of samples used to estimate the per-region sin-
gular values of Aω for as many ω i.e. N of them, and the
number k of top-singular values to utilize (Appendix A.2).
We then describe the computation times we observed on our
hardware/software (Appendix A.3).

Appendix B provides the proofs for Theorem 1 and
Corollary 1. Appendix C supports our claims with addi-
tional experiments on various dataset and models. First,
Appendix C.1 studies how polarity sampling can help un-
der distribution shift between the training distribution and a
target distribution, this is done through colored-MNIST and
NVAE. Then Appendix C.2 proposes to study the effect of
polarity sampling on ProGAN which is crucial as ProGAN
does not allow for truncation based control of its samples.

We conclude with Appendix D and Appendix E that pro-
vide descriptions of the datasets and additional qualitative
samples from the empirical experiments performed in the
main part of the paper, respectively.

A. Implementation Details and Online Sam-
pling Solution

A.1. Online Algorithm

One important aspect of polarity sampling, as summa-
rized in Algorithm 1 is the need to first sample the DGN
latent space to obtain the top singular values of as many
per-region slope matrices Aω as possible. This might seem
as a bottleneck if one wants to repeatedly apply polarity
sampling on a same DGN. However, this is to provide an
estimate of the DGN per-region change of variables, and as
the DGN is not retrained nor fine-tuned, it only needs to
be done once. Furthermore, this allows for an online sam-
pling algorithm that we provide in Algorithm 2. In short,
one first perform this task of estimating as many per-region
top singular values as possible, once this is completed, only
sampling of latent vectors z and rejection sampling based

on the corresponding Aω matrix is done online, Aω of the
sampled z being obtained easily via Aω = JG(z).

Algorithm 2 Online Rejection Sampling Algorithm

Input: Latent space domain, D; Generator G; N change
of volume scalars {σ1, σ2, ..., σN}; Number of singular
values K;
while True do

z ∼ U(D)
α ∼ U [0, 1]
A = JG(z)

σz =
∏K

k=1K-SingularV alues(A,K)

if σρ
z

σρ
z+

∑N
i=1 σρ

i

≥ α then

x← G(z)
return x

A.2. Effect of N and k

One important aspect of our algorithm comes from the
two hyper-parametersN and k. They represent respectively
the number of latent space samples to use to estimate as
much Aω as possible (recall Algorithm 1), and the number
of top singular values to compute. Both represent a trade-
off between exact polarity sampling, and computation com-
plexity. We argue that in practice, N ≈ 150K and k ≈ 100
is enough to obtain a good estimate of the polarity sampling
distribution (Eq. (4)). To demonstrate that, we first provide
an ablation study of the number of N and k used for polar-
ity sampling in Tab. 3 and Tab. 4. We also present a visual
inspection of the impact of N and k on the precision and
recall in Fig. 9.

A.3. Computation Times and Employed Soft-
ware/Hardware

All the experiments were run on a Quadro RTX 8000
GPU, which has 48 GB of high-speed GDDR6 memory
and 576 Tensor cores. For the software details we refer the
reader to the provided codebase. In short, we employed
TF2 (2.4 at the time of writing), all the usual Python scien-
tific libraries such as NumPy and PyTorch. We employed
the official repositories of the various models we employed
with official pre-trained weights. As a note, most of the ar-
chitectures can not be run on GPUs with less or equal to 12
GB of memory.

https://bit.ly/magnet-polarity
https://bit.ly/polarity-samp


FFHQ 1024×1024 LSUN Cat 256×256

N
FID

(lowest)
Precision

(max)
Recall
(max)

FID
(lowest)

Precision
(max)

Recall
(max)

100K 2.63 0.80 0.59 6.38 0.69 0.31
200K 2.62 0.82 0.63 6.38 0.71 0.32
250K 2.59 0.84 0.64 6.39 0.74 0.31
300K 2.61 0.87 0.65 6.37 0.75 0.33
500K 2.58 0.90 0.67 6.34 0.77 0.33

Table 3. Ablation of N and its effect on best FID, Precision and
Recall values that can be obtained by a StyleGAN2 (ψ = 1) on
the FFHQ and LSUN Cat dataset. We vary the polarity in the
VGG space for FFHQ dataset, and style space for LSUN Cats, for
number of singular values k = 30.

FFHQ 1024×1024

K
FID

(lowest)
Precision

(max)
Recall
(max)

10 2.71 0.89 0.65
20 2.67 0.90 0.66
40 2.57 0.90 0.67
60 2.62 0.90 0.66
80 2.67 0.90 0.66

100 2.70 0.90 0.67

Table 4. Ablation of K and its effect on the best FID, Precision
and Recall values that can be obtained by a StyleGAN2 (ψ = 1)
on the FFHQ dataset. We vary the polarity in the inception space
for FFHQ dataset

We report here the Jacobian computation times for Ten-
sorflow 2.5 with CUDA 11 and Cudnn 8 on an NVIDIA Ti-
tan RTX GPU. For StyleGAN2 pixel space, 5.03s/it; Style-
GAN2 style-space, 1.12s/it; BigGAN 5.95s/it; ProgGAN
3.02s/it. For NVAE on Torch 1.6 it takes 20.3s/it. Singular
value calculation for StyleGAN2 pixel space takes .005s/it,
StyleGAN2 style space .008s/it, BigGAN .001s/it, Prog-
GAN .004s/it and NVAE .02s/it on NumPy. According to
this, for StyleGAN2-e, N=250,000 requires 14 days to ob-
tain. This only needs to be done once, and it is also possible
to perform online sampling once it is calculated. The time
required for this is relatively small compared to the training
time required for only one set of hyperparameters, which
is 35 days and 11 hours1. We have added pseudocode for
MaGNET sampling and online sampling in Appendix G.

Computational Complexity. We are computing the top-
k singular values of theD×K Jacobian matrix. This can be
performed inO(DKk+Dk2). In fact, one has to project k
K-dimensional vectors onto the D ×K Jacobian’s matrix:
O(DKk) and then perform QR-decomposition of theD×k
matrix: O(Dk2). Then, k D-dimensional vectors are pro-

1https://github.com/NVlabs/stylegan2

jected onto the transpose of the Jacobian matrix: O(DKk)
followed by their QR-decomposition: O(Kk2), dominated
by O(Dk2) (full SVD runs in O(DK2)).

A.4. Reducing Memory Requirements

The core of polarity sampling relies on computing the
top-singular values of the possibly large matrix Aω for a
variety of regions ω ∈ Ω, discovered through latent space
sampling (recall Algorithm 1). One challenge for state-of-
the-art DGNs lies in the size of the matrices Aω . Multiple
solutions exist, such as computing the top singular values
through block power iterations. Doing so, the matrices Aω

do not need to be computed entirely, only the matrix-matrix
product AωW and AT

ωV needs to be performed repeatedly
(interleaved with QR decompositions). After many itera-
tions, W estimate the top right-singular vectors of Aω , and
V the corresponding top left-singular vectors from which
the singular values can be obtained. However, we found this
solution to remain computationally extensive, and found
that in practice, a simpler approximation that we now de-
scribe provided sufficiently accurate estimates.

Instead of the above iterative estimation, one can instead
compute the top-singular values of WAω with W a semi-
orthogonal matrix of shapeD′×D withD′ < D (recall that
Aω is of shape D ×K). Doing so, we are now focusing on
the singular values of Aω whose left-singular vectors are
not orthogonal with the right singular vectors of W . While
this possibly incurs an approximation error, we found that
the above was sufficient to provide polarity sampling and
adequate precision-recall control.

A.5. Applying Polarity Sampling in Style, VGG and
Inception Space

We call the ambient space of the images the pixel-
space, because each dimension in this space corresponds
to individual pixels of the images. Apart from control-
ling the density of the pixel-space manifold, polarity can
also be used to control the density of the style-space mani-
fold for style based architectures such as StyleGAN{1,2,3}
[28–30]. We also extend the idea of intermediate mani-
folds to feature space manifolds such as VGG or Incep-
tionV3 space, which can be assumed continuous mappings
of the pixel space to the corresponding models’ bottleneck
embedding space. In Fig. 8-left we present comparisons
between Style, Pixel, VGG and Inception space precision-
recall curves for StyleGAN2-F FFHQ with ψ = 1, top-
k = 30 and ρ = [−2, 2]. We see that the VGG and In-
ceptionV3 curves trace almost identically. This is expected
behavior since both these feature spaces correspond to per-
ceptual features, therefore the transform they induce on the
pixel space distribution is almost identical. On the other
hand, the pixel space distribution saturates at high polarity
at almost equal values. The point of equal precision and



recall for both the Inception and VGG spaces, occurs at a
polarity of 0.1. It’s clear from the figures that feature space
polarity changes have a larger effect on precision and re-
call compared to pixel-space and style-space has the least
effect on precision and recall. This could be due to the
number of density transforms the style-space distribution
undergoes until the VGG space, where precision and re-
call is calculated. In Fig. 8-right we present the polarity
characteristics for StyleGAN2-E, StyleGAN2-F and Style-
GAN3. For each model, we choose the best space w.r.t the
pareto frontier, VGG and Inception space for StyleGAN2-E
and StyleGAN2-F, and pixel-space for StyleGAN3. Notice
that StyleGAN3 exceeds the recall of the other two mod-
els for negative polarity, while matching the precision for
StyleGAN2-E.

B. Proofs

The proofs of the two main claims of the paper heav-
ily rely on the spline form of the DGN input-output map-
ping from Eq. (1). For more background on the form of
the latent space partition Ω, the per-region affine mappings
Aω, bω,∀ω ∈ Ω and further discussion on how to deal with
DGN including smooth activation functions, we refer the
reader to [4], and in particular to [24] for DGN specific re-
sults.

B.1. Proof of Theorem 1

Proof. We will be doing the change of variables z =
(AT

ωAω)
−1AT

ω (x − bω) ≜ A†
ω(x − bω), also notice that

JG−1(x) = A†. First, we know that PG(z)(x ∈ w) =
Pz(z ∈ G−1(w)) =

∫
G−1(w)

pz(z)dz which is well de-
fined based on our full rank assumptions. We then proceed
by

PG(x ∈ w) =
∑
ω∈Ω

∫
ω∩w

pz(G
−1(x))

×
√

det(JG−1(x)TJG−1(x))dx

=
∑
ω∈Ω

∫
ω∩w

pz(G
−1(x))

×
√

det((A+
ω )TA

+
ω )dx

=
∑
ω∈Ω

∫
ω∩w

pz(G
−1(x))

1√
det(AT

ωAω)
dx,

where the second to third equality follows by noticing that
σi(A

†) = (σi(A))
−1 which can be showed easily be re-

placing Aω with its SVD and unrolling the product of ma-
trices. Now considering a uniform latent distribution case
on a bounded domain U in the DGN latent space we obtain

by substitution in the above result

pG(x) =

∑
ω∈Ω 1x∈ω det(AT

ωAω)
− 1

2

V ol(U)
, (5)

leading to the desired result.

B.2. Proof of Corollary 1

Proof. The proof of this result largely relies on Theorem 1.
Taking back our previous result, we know that

pG(x) =
∑
ω∈Ω

pz(G
−1(x))1{G−1(x)∈ω}

1√
det(AT

ωAω)
dx.

(6)
However, recall that polarity sampling leverages the prior
probability given by

pρ(z) =
1

κ

∑
ω∈Ω

det(AT
ωAω)

ρ
21{z∈ω}, (7)

which, after replacing G−1(x) with its corresponding z be-
comes

pG(x) =
∑
ω∈Ω

1

κ

det(AT
ωAω)

ρ
2√

det(AT
ωAω)

1{z∈ω′}dx, (8)

and simplifies to

pG(x) =
∑
ω∈Ω

1

κ
det(AT

ωAω)
ρ−1
2 1{z∈ω′}dx, (9)

leading to the desired result. Note that when ρ = 1 then the
density is uniform onto the DGN manifold, when ρ = 0,
one recovers the original DGN density onto the manifold,
and in the extreme cases, only the region with highest or
lowest probability would be sampled i.e. the modes or anti-
modes.

C. Extra experiments
C.1. Polarity Helps Under Distribution Shift

A last benefit of polarity sampling is to adapt a sampling
distribution to a reference distribution that suffered a distri-
bution shift. For example, this could occur when training a
DGN on a training set, and using it for content generation
with a slightly different type target samples. In fact, as long
as the distribution shift remains reachable by the model i.e.
in the support of pG, altering the value of ρ will help to
shift the sampling distribution, possible to better match the
target one. In all generality, there is no guarantee that any
benefit would happen for ρ ̸= 0, however, for the particular
case where the distribution shift only changes the way the
samples are distributed (on the same domain), we observe
in Fig. 14 that ρ ̸= 0 can provide benefit. To control the
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Figure 8. Top: Precision Recall tradeoff for polarity sweep on
VGG, Inception and Pixel space distributions. Bottom: BigGAN-
deep Imagenet pareto curves obtained for a few classes, in red is
the baseline while each scatter point can be reached by varying
truncation and ρ. Calculated with 1300 real and generated sam-
ples.
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Figure 9. Effect of Polarity Sampling on Precision (top) and Re-
call (bottom) of a StyleGAN2-F model pretrained on FFHQ for
varying number of top-k singular values (right) and varying num-
ber of latent space samplesN (left) used to obtain per-region slope
matrix Aω singular values (recall Sec. 3.3 and Algorithm 1). The
trend in metrics stabilizes when using around N ≈300,000 latent
space samples. Increasing the number of top-k singular values to
use, amplifies the effect of polarity, saturating at around k = 50.

experimental setting, we took the colored-MNIST dataset
and the NVAE DGN model [53] and produce a training set
with a Gaussian hue distribution favoring blue and two test
set, one with same hue distribution and one with uniform
hue distribution. We observe that ρ can provide a beneficial
distribution shift to go from the biased-hue samples to the
uniform-hue one.

C.2. ProGAN Polarity Sweep

Previously in Sec. 4.1, we have drawn note to the fact
that ProGAN [27], an architecture which is widely used,
but does not incorporate truncation, can also be controlled
via polarity sampling. In Tab. 5 we present precision-recall
characteristics for polarity sweep on ProGAN. As control,
we also perform latent space truncation as in [8] by sam-
pling a truncated gaussian distribution, parameterized by its
support [−β, β]. We change β between [10−10, 10] and no-
tice that for β smaller than 10−4, the generator collapses to
0 precision and recall. Other than that, it maintains a pre-
cision of 0.72 and recall of 0.34. Using polarity sweep, we
also exceed the baseline FID on CelebAHQ 1024x1024 at-
tained by ProGAN; polarity of −.01 in pixel-space reduces
the FID from 7.37 to 7.28.

C.3. FID for truncated models

While the FID improvement for some of the methods we
present are not significantly large, we see that for truncated
models, i.e., models with ψ < 1, ρ > 0 provides signif-
icant FID improvements by increasing diversity, e.g., for
StyleGAN2-FFHQ with ψ = {.9, .7, .5}, increasing ρ > 0
improves FID by {.69, 8.11, 11.1} points. Such truncation
is commonly used in practice for qualitative experiments,
making polarity sampling particularly relevant in such set-
tings. Since truncation reduces the range of the generator
and polarity increases the diversity of sampling within the
range, both can be combined to achieve greater FID im-
provements.

C.4. NVAE Negative Log-Likelihood for Varying ρ

To validate the effect of ρ on the likelihood of gen-
erated samples, we estimate the negative log-likelihood
of samples generated via an NVAE trained on colored-
MNIST while varying ρ. We generate 5000 sam-
ples each for ρ = {−5,−1,−.5,−.1, 0, .1, .5, 1, 5}
which yields negative log-likelihood values of
{3.0, 3.2, 3.5, 3.8, 3.9, 4.1, 4.3, 4.6, 5.1}×10−2 bits/dim.
This shows that decreasing ρ < 0 samples high-likelihood
points while increasing ρ > 0 samples lower-likelihood
points compared to standard sampling (ρ = 0).

C.5. Perceptual Path Length for Constant Latent
Shifts

In Sec. 5.2 we present the PPL variation for a 10−4 inter-
polation step from a latent space point towards another ran-
dom latent space point. To evaluate the perceptual smooth-
ness around regions of the latent space, we also calculate
the PPL for paths of length .3 starting from individual la-
tent space points towards random directions. We see that
for both StyleGAN2-FFHQ and BigGAN-Imagenet, PPL
decreases monotonically with ρ < 0 whereas first de-



Figure 10. Modes for BigGAN-deep trained on Imagenet, and conditioned on a specific class: “pug” (top left), “lion” (top right), “cheese-
burger” (bottom left) and “pomerian” (bottom right). We observe that the modes correspond to nearly aligned faces with little to no
background. Variation of colors and sizes can be seen across the modes. The same observation can be made for the cheeseburger, nearly
no background is present, and the shape is consistent to a typical cheeseburger ”template”. See Fig. 19 for additional classes.

creases and then increases for ψ < 1. For StyleGAN2-
FFHQ we acquire PPL = {281, 316} for ψ = {0.1, 0}
and PPL = {274, 271} for ρ = {−2,−10}. For BigGAN-
GoldenRetreiver we get PPL 35.9 for ψ = 0 and 0.20 for

ρ = −2. This possibly indicates that decreasing trunca-
tion might not always lead to perceptually smoother regions
whereas decreasing polarity does.



Figure 11. Polarity sweep for a WGAN trained on 2D toy datasets with 4 gaussians (top row), 4 gaussians with triangular domain (middle
row) and two circles (bottom row).

Figure 12. Modes for a VAE trained on colored-MNIST with 8
nearest neighbors. The leftmost column for each figure contains
generated samples. Notice the higher prevalence of digit 1. Due
to low pixel variations, digit 1 samples have high density on the
manifold.
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Figure 13. Singular value distribution and Marchenko Pastur dis-
tribution fit for StyleGAN2-FFHQ (left) and BigGAN-Imagenet
(middle). Log-sigma distribution for StyleGAN2-FFHQ with
varying ρ (right).
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Figure 14. FID, precision and recall for an NVAE trained on
colored-MNIST with hue bias. Metrics are calculated for a test
dataset with hue distribution Left: identical to training and Right:
uniformly distributed across digit classes. Polarity allows adapt-
ing the DGN output distribution to balance possible distribu-
tion shifts.

Figure 15. Distribution of l2 distance to 3 MNIST training
set nearest neighbors, for 1000 generated MNIST samples from
WGAN (left) and NVAE (right). For ρ = −5 we see that both
distributions have a peak around 5. For WGAN the distribution
has a significantly longer tail compared to NVAE, indicating that
the WGAN modes don’t necessarily coincide with training points.

D. Dataset Description

D.1. colored-MNIST

We perform controlled experiments on NVAE [53] by
training on datasets with and without controllable distribu-
tion shifts. To control the shift, we colorize MNIST with
hue ranging [0, π] by 1) uniformly sampling the hue and 2)



CelebAHQ 1024×1024

ρ ≤ 0 ρ > 0
|ρ| FID Precision Recall FID Precision Recall

0 7.37 .73 .34 - - -
0.01 7.28 .73 .34 7.45 .73 .35
0.1 7.41 .76 .31 8.95 .68 .38
1 12.65 .85 .19 17.96 .58 .48
2 13.09 .86 .19 18.54 .58 .48

Table 5. FID, Precision and Recall metrics of ProGAN [27] with
polarity sweep in the pixel space.

sampling the hue for each image from a truncated normal
distribution, with a truncation scale of 2.

D.2. LSUN Dataset

We use the LSUN dataset [54] available at the official
website2. We preprocess the dataset using the StyleGAN2
repository3.

D.3. AFHQv2 and FFHQ

We use the version 2 of AFHQ that was released
prepackaged with StyleGAN3 for our experiments. For
FFHQ we use also use TFRecords provided with Style-
GAN2.

D.4. License

The majority of Polarity-Sampling is licensed under CC-
BY-NC, however portions of the project are available under
separate license terms: NVAE, StyleGAN2 and StyleGAN3
are licensed under the NVIDIA license; guided-diffusion is
licensed under the MIT license.4

E. Qualitative results
We provide in the following pages, Figs. 16 to 19 that

correspond to LSUN Cats, LSUN Cars, AFHQv2 samples
with varying ρ values and 800 Imagenet modes. For LSUN
Cars and LSUN Cats we draw comparisons between vary-
ing truncation and varying polarity independently.

2https://www.yf.io/p/lsun
3https://github.com/NVlabs/stylegan2
4https://github.com/openai/guided-diffusion/blob/main/LICENSE



Figure 16. Uncurated samples of LSUN Cats using (top) ρ = {−1,−.5,−.2,−.1, 0}, ψ = .8 and (bottom) ψ = {.7, .73, .75, .77, .8};
both representing regions with roughly an equal span of recall score on Fig. 3. Notice the significant precision of the left-most columns of
top compared to the left-most of bottom, where at equal diversity, top has significantly higher precision score.



Figure 17. Uncurated samples of LSUN Cars using (top) ρ = {−.1,−.075,−.05,−.025, 0}, ψ = .7 and (bottom) ψ =
{.5, .55, .6, .65, .7}; both representing regions with roughly an equal span of precision score on Fig. 3 Notice the significant diversity
in (top) especially in the leftmost columns, where the recall score is significantly higher than that of the leftmost column of bottom left,
with equal precision.



Figure 18. Uncurated samples of AFHQv2 using ρ = {−2,−1,−.5,−.2, 0, .01, .1, .2, .5} and ψ = .9 in pixel-space. As we move right
from baseline (middle column) we see an increase in texture diversity of images, whereas, moving left, we see images with smoother
textures.



Figure 19. Depiction of a single mode (large negative ρ) for each class of the first 800 Imagenet classes.
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