
Appendix

A. Comparison between From-Scratch Pruning and Transfer
We now present an experiment which supports our claim that from-scratch pruning and finetuning is inferior to transfer

from ImageNet sparse models. For instance, image classification on the CIFAR-100 [38] dataset using a WideResNet [68]
architecture, following [57], the AC/DC and GMP pruning methods at 90% sparsity reach 79.1% and 77.7% Top-1 validation
accuracies, respectively. In contrast, finetuning from a ResNet50 backbone pruned on ImageNet using AC/DC and GMP at
90% sparsity reaches a validation accuracy of 83.9% and 84.4%, respectively (please see Table C.2 for the results). This
example serves to illustrate the significant accuracy gains from using transfer learning with sparse models, as opposed to
training sparse models from scratch.

B. Hyperparameters and Training Setup
Here we discuss the general hyperparameters and experimental setup used for the full and linear finetuning experiments.

Regarding data loading image augmentation settings, we are careful to match them to the ones used in the original upstream
training protocol. Specifically, this affects the choice of whether to use Bicubic or Bilinear image interpolation for image
resizing; for example, RigL models were trained using Bicubic interpolation, whereas the other pruning methods considered
used the Biliniar interpolation. All ResNet and MobileNet models considered were trained using standard ImageNet-specific
values for the normalization mean and standard deviation. In the case of full finetuning, we used dataset-specific normal-
ization values for the downstream tasks; these were obtained by loading the dataset once with standard data augmentations
and computing the means and variances of the resulting data. For linear finetuning, we use center cropping of the images,
followed by normalization using standard ImageNet values. For both full and linear finetuning, we use the same training
hyperparameters as [61]; specifically, we train for 150 epochs, decreasing the initial learning rate by a factor of 10 every 50
epochs. We use 0.01 as the initial learning rate for all linear finetuning experiments; for full finetuning, we empirically found
0.001 to be the initial learning rate which gives comparable results for most datasets except Aircraft and Cars, for which we
use 0.01. Our experiments were conducted using PyTorch 1.8.1 and NVIDIA GPUs. All full finetuning experiments on the
ResNet50 backbone were repeated three times and all linear finetuning experiments five times.

C. Extended ResNet50 Results
In this section, we provide additional details, together with the complete results for our experiments for linear and full

finetuning from ResNet50, presented in Sections 3.3 and 3.4. For each pruning method, we used a range of sparsity levels,
and trained linear and full finetuning for each model and sparsity level, on all 12 downstream tasks; each experiment was
repeated 5 times for linear and 3 times for full finetuning. Note that checkpoints for some pruning methods were not available
for some of the higher sparsities.

C.1. Linear Finetuning Results
We provide the complete results for our linear finetuning experiments on each downstream task, for all pruning methods

and sparsity levels considered. The results for the transfer accuracies for each pruning strategy, sparsity level, and downstream
task are presented in Figure C.1 and Table C.1. We discussed in Section 3.3 that regularization methods match and even
sometimes outperform the dense baseline transfer performance. Note that this fact is valid not only in aggregate, but also at
the level of each individual dataset.

In table C.1, we also include the linear transfer results for LTH-T. We note that the generally poor performance of the
method, especially for more specialized tasks and higher sparsity levels, should not be taken as a criticism of the method
itself: this use case is clearly contrary to the method’s design, and the spirit of the original Lottery Ticket Hypothesis (which
aims to discover masks with the intent to retrain, rather than final weights). Rather, we include these results to provide
quantitative justification for the omission of LTH-T from any further analyses, and supporting the original authors’ point that
additional finetuning is necessary in order to obtain a competitive lottery ticket for transfer learning.

Additionally, we also validate our linear finetuning results by training with a different optimizer than SGD with momen-
tum; namely, we use L-BFGS [47] and L2 regularization. We tested multiple values for the L2 regularization strength and
we report for each dataset and method the highest value for the test accuracy. The results of this experiment are presented
in Table C.3. Despite the differences in test accuracy between models trained with SGD or L-BFGS, we can observe a very
similar trend related to the performance of sparse models over the dense baseline: namely, regularization pruning methods,



Figure C.1. (ResNet50) Per-dataset downstream validation accuracy for transfer learining with linear finetuning.

Figure C.2. (ResNet50) Per-dataset downstream validation accuracy for transfer learining with full finetuning.

such as AC/DC, STR or RigL, tend to be close to—or even outperform—the dense baseline, especially on fine-grained tasks
(Aircraft, Cars).

C.2. Full Finetuning Results
Similarly to linear finetuning, we further provide complete results for full finetuning from sparse models. We present

individual results per downstream task and pruning method, at different sparsity levels, in Figure C.2 and Table C.2; we
report for each the average and standard deviation across 3 different trials. The results further support our conclusions
from Section 3.4; namely, downstream task accuracy is correlated with the backbone sparsity, and progressive sparsification
methods (GMP, WoodFisher) generally perform better than regularization methods.

D. Training Time Speed-up
The results presented in Section 3.6 are encouraging, suggesting that using features obtained from sparse models for

linear finetuning can substantially reduce the training time, 2 and up to 3 times at 90% sparsity on the backbone model, with
a small effect on the downstream accuracy, relative to the dense baseline. We additionally provide speed-up numbers for
other sparsity levels. Table D.4 shows the average training time per epoch, as a fraction of the dense finetuning time, for the
pruned models at different levels of sparsities. The numbers we show are computed for the Caltech-101 downstream task;
however, they will most likely be very similar across all tasks, since the time required for inference on the backbone network
dominates the time required for optimizing the linear classifier.

Furthermore, following [36], the accuracy for finetuning the linear classifier with pre-extracted features typically correlates
very well with the accuracy of linear finetuning when data augmentation is used (as in this specific example). Therefore, based
on the results from Figures C.1 and 4, we hypothesize that there are significant advantages when using sparse models for
linear finetuning: firstly, potential improvements in transfer accuracy, compared to the dense backbone, and more notably,
smaller memory footprint and training time savings.



Pruning Strategy Dense AC/DC GMP LTH-T RigL ERK 1x RigL ERK 5x STR WoodFisher

80% Sparsity

Aircraft 49.2 ± 0.1 55.1 ± 0.1 45.8 ± 0.1 36.9 ± 0.1 54.6 ± 0.1 55.2 ± 0.2 53.7 ± 0.0 40.0 ± 0.2
Birds 57.7 ± 0.1 58.4 ± 0.0 56.2 ± 0.0 29.6 ± 0.1 55.2 ± 0.0 56.7 ± 0.1 56.2 ± 0.1 51.9 ± 0.1

CIFAR-10 91.2 ± 0.0 90.9 ± 0.0 89.7 ± 0.0 83.4 ± 0.1 89.7 ± 0.1 90.0 ± 0.1 91.4 ± 0.0 89.6 ± 0.0
CIFAR-100 74.6 ± 0.1 74.7 ± 0.1 72.0 ± 0.1 62.0 ± 0.1 73.1 ± 0.1 73.7 ± 0.0 74.7 ± 0.0 71.3 ± 0.0
Caltech-101 91.9 ± 0.1 92.4 ± 0.2 91.5 ± 0.2 75.4 ± 0.1 91.1 ± 0.1 90.8 ± 0.3 91.2 ± 0.1 91.2 ± 0.1
Caltech-256 84.8 ± 0.1 84.6 ± 0.1 83.9 ± 0.1 66.1 ± 0.1 83.3 ± 0.1 84.6 ± 0.1 83.6 ± 0.0 83.7 ± 0.1

Cars 53.4 ± 0.1 56.6 ± 0.0 49.1 ± 0.1 32.7 ± 0.1 57.4 ± 0.1 58.6 ± 0.1 57.0 ± 0.1 44.9 ± 0.1
DTD 73.5 ± 0.2 74.4 ± 0.1 71.2 ± 0.1 64.9 ± 0.2 73.5 ± 0.2 72.9 ± 0.3 74.3 ± 0.2 70.8 ± 0.2

Flowers 91.6 ± 0.1 92.7 ± 0.1 90.9 ± 0.1 85.6 ± 0.1 92.2 ± 0.1 92.3 ± 0.1 93.0 ± 0.0 87.6 ± 0.1
Food-101 73.2 ± 0.0 73.8 ± 0.0 70.5 ± 0.0 61.9 ± 0.0 73.3 ± 0.0 72.5 ± 0.1 73.9 ± 0.0 68.5 ± 0.0

Pets 92.6 ± 0.1 92.3 ± 0.1 92.5 ± 0.1 79.4 ± 0.1 91.9 ± 0.1 92.5 ± 0.2 91.7 ± 0.0 92.2 ± 0.1
SUN397 60.1 ± 0.0 60.4 ± 0.0 58.1 ± 0.0 47.4 ± 0.0 59.1 ± 0.1 59.9 ± 0.0 60.3 ± 0.0 57.8 ± 0.1

90% Sparsity

Aircraft 49.2 ± 0.1 55.5 ± 0.1 48.7 ± 0.1 16.5 ± 0.2 54.1 ± 0.1 56.6 ± 0.1 52.9 ± 0.1 44.0 ± 0.2
Birds 57.7 ± 0.1 58.7 ± 0.0 55.4 ± 0.1 11.4 ± 0.1 53.3 ± 0.0 57.2 ± 0.1 55.2 ± 0.1 52.7 ± 0.1

CIFAR-10 91.2 ± 0.0 91.0 ± 0.0 89.4 ± 0.0 67.0 ± 0.1 90.0 ± 0.1 90.2 ± 0.1 90.6 ± 0.0 88.9 ± 0.0
CIFAR-100 74.6 ± 0.1 74.3 ± 0.0 71.5 ± 0.0 42.2 ± 0.1 72.8 ± 0.1 73.4 ± 0.1 73.7 ± 0.1 70.5 ± 0.0
Caltech-101 91.9 ± 0.1 92.5 ± 0.1 91.6 ± 0.1 49.0 ± 0.6 90.6 ± 0.3 91.4 ± 0.4 90.9 ± 0.1 91.3 ± 0.1
Caltech-256 84.8 ± 0.1 84.5 ± 0.0 82.9 ± 0.0 42.0 ± 0.1 81.9 ± 0.0 84.5 ± 0.1 82.6 ± 0.0 83.0 ± 0.1

Cars 53.4 ± 0.1 56.0 ± 0.1 50.2 ± 0.0 15.4 ± 0.1 55.5 ± 0.1 60.5 ± 0.1 54.8 ± 0.1 46.7 ± 0.0
DTD 73.5 ± 0.2 73.7 ± 0.2 72.4 ± 0.2 54.7 ± 0.1 72.6 ± 0.3 72.7 ± 0.2 73.8 ± 0.1 71.0 ± 0.2

Flowers 91.6 ± 0.1 92.4 ± 0.0 91.4 ± 0.1 67.7 ± 0.1 91.6 ± 0.1 92.4 ± 0.1 93.0 ± 0.1 89.0 ± 0.1
Food-101 73.2 ± 0.0 73.8 ± 0.0 71.1 ± 0.0 46.9 ± 0.0 71.7 ± 0.0 72.6 ± 0.0 72.6 ± 0.0 69.2 ± 0.0

Pets 92.6 ± 0.1 91.9 ± 0.1 92.0 ± 0.1 43.8 ± 0.2 91.1 ± 0.1 91.9 ± 0.2 91.1 ± 0.1 92.0 ± 0.1
SUN397 60.1 ± 0.0 59.8 ± 0.1 58.1 ± 0.0 31.7 ± 0.1 57.7 ± 0.0 59.8 ± 0.1 58.2 ± 0.0 56.8 ± 0.0

95% Sparsity

Aircraft 49.2 ± 0.1 56.6 ± 0.1 N /A 4.5 ± 0.3 53.5 ± 0.1 56.9 ± 0.1 50.3 ± 0.1 45.6 ± 0.3
Birds 57.7 ± 0.1 57.7 ± 0.0 N /A 2.3 ± 0.1 51.9 ± 0.1 55.9 ± 0.0 52.1 ± 0.1 51.8 ± 0.1

CIFAR-10 91.2 ± 0.0 90.5 ± 0.0 N /A 39.9 ± 0.2 89.4 ± 0.0 89.8 ± 0.1 89.1 ± 0.0 88.6 ± 0.0
CIFAR-100 74.6 ± 0.1 73.4 ± 0.0 N /A 13.5 ± 0.2 71.5 ± 0.1 72.4 ± 0.1 71.7 ± 0.0 69.7 ± 0.0
Caltech-101 91.9 ± 0.1 91.6 ± 0.1 N /A 20.1 ± 0.5 89.0 ± 0.1 91.4 ± 0.1 90.0 ± 0.2 91.0 ± 0.2
Caltech-256 84.8 ± 0.1 82.8 ± 0.1 N /A 12.4 ± 0.3 80.1 ± 0.1 83.5 ± 0.1 80.2 ± 0.1 81.2 ± 0.1

Cars 53.4 ± 0.1 56.9 ± 0.1 N /A 3.9 ± 0.1 52.9 ± 0.0 57.0 ± 0.1 50.5 ± 0.1 45.5 ± 0.0
DTD 73.5 ± 0.2 72.7 ± 0.1 N /A 27.4 ± 0.2 71.9 ± 0.1 72.9 ± 0.2 72.1 ± 0.2 70.4 ± 0.1

Flowers 91.6 ± 0.1 93.0 ± 0.1 N /A 27.8 ± 0.6 91.0 ± 0.1 92.4 ± 0.1 91.9 ± 0.1 89.6 ± 0.0
Food-101 73.2 ± 0.0 73.2 ± 0.0 N /A 15.0 ± 0.1 70.6 ± 0.1 71.9 ± 0.0 70.7 ± 0.0 68.2 ± 0.0

Pets 92.6 ± 0.1 91.0 ± 0.2 N /A 15.9 ± 0.2 90.1 ± 0.1 91.1 ± 0.1 89.8 ± 0.1 91.4 ± 0.0
SUN397 60.1 ± 0.0 58.2 ± 0.0 N /A 8.4 ± 0.2 55.9 ± 0.1 58.3 ± 0.1 56.3 ± 0.0 55.1 ± 0.1

98% Sparsity

Aircraft 49.2 ± 0.1 54.8 ± 0.1 N /A N /A N /A N /A 48.0 ± 0.1 45.0 ± 0.1
Birds 57.7 ± 0.1 54.5 ± 0.0 N /A N /A N /A N /A 43.7 ± 0.0 48.1 ± 0.1

CIFAR-10 91.2 ± 0.0 89.2 ± 0.0 N /A N /A N /A N /A 86.5 ± 0.0 86.6 ± 0.0
CIFAR-100 74.6 ± 0.1 71.6 ± 0.0 N /A N /A N /A N /A 67.4 ± 0.0 67.8 ± 0.0
Caltech-101 91.9 ± 0.1 89.0 ± 0.1 N /A N /A N /A N /A 86.3 ± 0.1 88.5 ± 0.1
Caltech-256 84.8 ± 0.1 79.8 ± 0.0 N /A N /A N /A N /A 73.4 ± 0.1 77.1 ± 0.0

Cars 53.4 ± 0.1 52.1 ± 0.0 N /A N /A N /A N /A 44.4 ± 0.1 42.2 ± 0.0
DTD 73.5 ± 0.2 71.6 ± 0.1 N /A N /A N /A N /A 68.4 ± 0.2 68.3 ± 0.1

Flowers 91.6 ± 0.1 92.3 ± 0.1 N /A N /A N /A N /A 90.8 ± 0.1 89.5 ± 0.1
Food-101 73.2 ± 0.0 70.8 ± 0.0 N /A N /A N /A N /A 65.3 ± 0.0 66.5 ± 0.0

Pets 92.6 ± 0.1 89.2 ± 0.1 N /A N /A N /A N /A 85.5 ± 0.1 88.7 ± 0.1
SUN397 60.1 ± 0.0 55.1 ± 0.0 N /A N /A N /A N /A 50.9 ± 0.0 52.4 ± 0.0

Table C.1. Transfer accuracy for sparse ResNet50 transfer with linear finetuning.



Pruning Strategy Dense AC/DC GMP LTH-T RigL ERK 1x RigL ERK 5x STR WoodFisher

80% Sparsity

Aircraft 83.6 ± 0.4 83.3 ± 0.1 84.4 ± 0.2 84.7 ± 0.5 82.6 ± 0.3 82.4 ± 0.2 79.8 ± 0.3 84.8 ± 0.2
Birds 72.4 ± 0.3 69.9 ± 0.2 72.5 ± 0.2 71.4 ± 0.1 72.3 ± 0.3 73.4 ± 0.1 68.1 ± 0.1 72.4 ± 0.4

CIFAR-10 97.4 ± 0.0 96.9 ± 0.1 97.2 ± 0.0 97.0 ± 0.0 96.9 ± 0.0 97.1 ± 0.0 96.5 ± 0.1 97.2 ± 0.1
CIFAR-100 85.6 ± 0.2 84.9 ± 0.2 85.1 ± 0.0 84.4 ± 0.2 83.6 ± 0.2 84.1 ± 0.4 83.6 ± 0.2 85.1 ± 0.1
Caltech-101 93.5 ± 0.1 92.5 ± 0.2 93.7 ± 0.5 92.1 ± 0.5 92.5 ± 0.1 92.0 ± 0.3 90.7 ± 0.6 93.7 ± 0.1
Caltech-256 86.1 ± 0.1 85.4 ± 0.2 85.1 ± 0.2 83.1 ± 0.1 83.8 ± 0.1 84.2 ± 0.2 84.0 ± 0.1 85.1 ± 0.1

Cars 90.3 ± 0.2 89.2 ± 0.1 90.3 ± 0.1 89.9 ± 0.0 89.4 ± 0.1 89.6 ± 0.1 87.8 ± 0.1 90.5 ± 0.2
DTD 76.2 ± 0.3 75.7 ± 0.5 75.4 ± 0.1 75.2 ± 0.4 74.5 ± 0.2 74.2 ± 0.2 73.7 ± 0.6 75.4 ± 0.3

Flowers 95.0 ± 0.1 94.7 ± 0.2 95.9 ± 0.2 93.9 ± 0.2 95.7 ± 0.2 96.1 ± 0.1 93.7 ± 0.2 95.5 ± 0.2
Food-101 87.3 ± 0.1 86.9 ± 0.1 87.4 ± 0.1 86.9 ± 0.1 86.9 ± 0.1 87.2 ± 0.1 85.9 ± 0.1 87.4 ± 0.1

Pets 93.4 ± 0.1 92.5 ± 0.0 93.4 ± 0.1 92.9 ± 0.1 92.2 ± 0.1 92.4 ± 0.1 92.1 ± 0.1 93.3 ± 0.3
SUN397 64.8 ± 0.0 64.0 ± 0.0 63.1 ± 0.1 61.7 ± 0.2 62.2 ± 0.2 62.0 ± 0.3 62.6 ± 0.1 62.8 ± 0.1

90% Sparsity

Aircraft 83.6 ± 0.4 82.8 ± 1.0 83.9 ± 0.7 84.9 ± 0.3 81.6 ± 0.5 83.0 ± 0.4 78.7 ± 0.4 84.5 ± 0.4
Birds 72.4 ± 0.3 68.5 ± 0.1 70.5 ± 0.1 67.8 ± 0.2 70.3 ± 0.0 72.9 ± 0.2 66.0 ± 0.2 71.6 ± 0.2

CIFAR-10 97.4 ± 0.0 96.6 ± 0.1 97.1 ± 0.0 96.6 ± 0.2 96.4 ± 0.1 97.0 ± 0.1 96.1 ± 0.1 97.0 ± 0.1
CIFAR-100 85.6 ± 0.2 83.9 ± 0.1 84.4 ± 0.0 83.0 ± 0.1 83.0 ± 0.2 83.7 ± 0.3 82.9 ± 0.2 84.4 ± 0.2
Caltech-101 93.5 ± 0.1 92.6 ± 0.2 92.9 ± 0.2 84.5 ± 0.3 91.7 ± 0.3 92.3 ± 0.4 90.9 ± 0.3 93.9 ± 0.3
Caltech-256 86.1 ± 0.1 84.8 ± 0.1 83.7 ± 0.3 78.6 ± 0.1 82.7 ± 0.2 84.0 ± 0.1 83.1 ± 0.2 84.0 ± 0.1

Cars 90.3 ± 0.2 88.5 ± 0.2 89.5 ± 0.0 89.5 ± 0.1 88.4 ± 0.1 89.2 ± 0.1 86.7 ± 0.2 90.0 ± 0.2
DTD 76.2 ± 0.3 75.2 ± 0.1 74.2 ± 0.1 71.9 ± 0.1 73.4 ± 0.4 75.2 ± 0.8 73.2 ± 0.4 75.5 ± 0.4

Flowers 95.0 ± 0.1 94.6 ± 0.1 95.3 ± 0.1 89.8 ± 0.2 95.5 ± 0.1 96.1 ± 0.1 93.4 ± 0.4 95.5 ± 0.3
Food-101 87.3 ± 0.1 86.6 ± 0.1 86.8 ± 0.1 86.4 ± 0.1 85.9 ± 0.1 87.3 ± 0.2 84.8 ± 0.0 87.0 ± 0.1

Pets 93.4 ± 0.1 92.1 ± 0.1 92.2 ± 0.1 91.1 ± 0.2 91.4 ± 0.2 92.3 ± 0.1 91.7 ± 0.2 92.7 ± 0.3
SUN397 64.8 ± 0.0 63.0 ± 0.0 62.5 ± 0.2 58.3 ± 0.2 61.3 ± 0.1 62.0 ± 0.2 61.2 ± 0.0 62.3 ± 0.1

95% Sparsity

Aircraft 83.6 ± 0.4 81.2 ± 0.4 N /A 82.6 ± 0.8 80.7 ± 0.1 82.5 ± 0.4 76.7 ± 0.8 83.6 ± 0.6
Birds 72.4 ± 0.3 66.9 ± 0.1 N /A 62.2 ± 0.1 68.3 ± 0.2 71.6 ± 0.1 62.3 ± 0.1 69.9 ± 0.1

CIFAR-10 97.4 ± 0.0 96.2 ± 0.1 N /A 95.5 ± 0.1 96.0 ± 0.1 96.6 ± 0.1 95.4 ± 0.1 96.7 ± 0.1
CIFAR-100 85.6 ± 0.2 82.9 ± 0.1 N /A 80.0 ± 0.1 82.0 ± 0.2 82.8 ± 0.0 80.9 ± 0.3 83.1 ± 0.1
Caltech-101 93.5 ± 0.1 91.9 ± 0.2 N /A 65.3 ± 0.8 90.7 ± 0.4 92.2 ± 0.3 89.8 ± 0.1 92.0 ± 0.3
Caltech-256 86.1 ± 0.1 83.1 ± 0.0 N /A 71.8 ± 0.3 81.1 ± 0.2 83.1 ± 0.2 80.3 ± 0.0 82.4 ± 0.1

Cars 90.3 ± 0.2 87.6 ± 0.1 N /A 87.5 ± 0.4 87.9 ± 0.3 88.9 ± 0.2 84.9 ± 0.2 88.9 ± 0.2
DTD 76.2 ± 0.3 74.1 ± 0.4 N /A 67.1 ± 0.8 73.3 ± 0.2 73.5 ± 0.2 72.6 ± 0.4 73.7 ± 0.3

Flowers 95.0 ± 0.1 94.1 ± 0.3 N /A 76.0 ± 1.3 94.9 ± 0.3 96.0 ± 0.0 93.0 ± 0.3 95.0 ± 0.3
Food-101 87.3 ± 0.1 85.5 ± 0.0 N /A 85.4 ± 0.1 85.1 ± 0.2 86.6 ± 0.0 83.0 ± 0.1 86.3 ± 0.1

Pets 93.4 ± 0.1 91.0 ± 0.1 N /A 84.5 ± 0.5 90.1 ± 0.2 91.6 ± 0.3 89.9 ± 0.3 92.3 ± 0.3
SUN397 64.8 ± 0.0 61.4 ± 0.2 N /A 51.4 ± 0.3 60.0 ± 0.3 61.1 ± 0.2 59.0 ± 0.1 60.9 ± 0.1

98% Sparsity

Aircraft 83.6 ± 0.4 79.1 ± 0.2 N /A N /A N /A N /A 72.0 ± 0.2 81.4 ± 0.3
Birds 72.4 ± 0.3 63.4 ± 0.1 N /A N /A N /A N /A 54.1 ± 0.1 65.4 ± 0.3

CIFAR-10 97.4 ± 0.0 95.0 ± 0.1 N /A N /A N /A N /A 93.8 ± 0.1 96.0 ± 0.0
CIFAR-100 85.6 ± 0.2 79.8 ± 0.1 N /A N /A N /A N /A 75.9 ± 0.2 80.7 ± 0.2
Caltech-101 93.5 ± 0.1 88.9 ± 0.1 N /A N /A N /A N /A 85.2 ± 0.6 89.8 ± 0.3
Caltech-256 86.1 ± 0.1 80.3 ± 0.1 N /A N /A N /A N /A 74.2 ± 0.0 78.9 ± 0.1

Cars 90.3 ± 0.2 85.5 ± 0.2 N /A N /A N /A N /A 79.9 ± 0.5 86.8 ± 0.1
DTD 76.2 ± 0.3 72.6 ± 0.1 N /A N /A N /A N /A 69.4 ± 0.3 71.8 ± 0.1

Flowers 95.0 ± 0.1 92.9 ± 0.1 N /A N /A N /A N /A 91.8 ± 0.3 94.0 ± 0.2
Food-101 87.3 ± 0.1 83.2 ± 0.0 N /A N /A N /A N /A 77.9 ± 0.1 84.2 ± 0.1

Pets 93.4 ± 0.1 88.8 ± 0.2 N /A N /A N /A N /A 85.5 ± 0.1 89.8 ± 0.1
SUN397 64.8 ± 0.0 58.4 ± 0.1 N /A N /A N /A N /A 53.8 ± 0.2 58.5 ± 0.1

Table C.2. Transfer accuracy for sparse ResNet50 transfer with full finetuning.



Pruning Strategy Dense AC/DC GMP RigL ERK 1x RigL ERK 5x STR WoodFisher

80% Sparsity

Aircraft 50.3 56.7 46.9 55.4 55.6 54.6 43.1
Birds 56.7 57.7 54.6 55.1 56.2 55.8 50.7

Caltech-101 91.8 92.0 91.2 91.5 91.2 91.4 91.3
Caltech-256 84.3 84.6 83.2 83.3 84.6 83.3 83.0

Cars 56.2 59.5 50.1 58.9 60.4 60.0 46.5
CIFAR-10 88.5 88.3 87.5 86.9 88.1 88.9 86.3

CIFAR-100 72.3 72.4 69.1 70.7 71.8 72.9 68.1
DTD 73.2 72.8 69.9 72.9 73.1 73.3 70.0

Flowers 92.9 93.9 92.0 93.3 93.3 93.9 89.0
Food-101 67.7 68.6 65.3 67.2 68.1 68.1 62.8

Pets 92.5 91.9 92.2 91.3 92.2 91.5 91.4
SUN397 58.5 59.3 56.4 58.0 59.4 59.4 55.8

90% Sparsity

Aircraft 50.3 56.7 49.6 55.3 57.4 54.6 45.0
Birds 56.7 57.7 54.3 52.8 56.9 54.7 51.5

Caltech-101 91.8 92.3 91.0 90.5 91.5 90.4 91.2
Caltech-256 84.3 84.1 82.6 81.7 84.7 82.3 82.5

Cars 56.2 59.0 52.4 57.3 62.0 57.8 48.4
CIFAR-10 88.5 88.5 86.7 87.1 87.5 87.4 86.2

CIFAR-100 72.3 71.6 68.9 70.1 72.0 72.0 67.6
DTD 73.2 72.8 71.8 71.5 71.6 72.2 69.3

Flowers 92.9 93.4 92.7 92.6 93.3 94.1 90.2
Food-101 67.7 67.7 65.9 65.0 67.5 67.3 63.6

Pets 92.5 91.6 91.8 91.3 91.5 90.5 91.1
SUN397 58.5 58.2 56.3 56.9 59.0 57.2 54.6

95% Sparsity

Aircraft 50.3 57.2 N /A 54.3 57.4 51.5 45.7
Birds 56.7 56.4 N /A 50.8 55.5 51.1 49.9

Caltech-101 91.8 91.6 N /A 89.4 91.7 89.9 90.6
Caltech-256 84.3 82.4 N /A 80.1 83.5 80.0 80.8

Cars 56.2 59.4 N /A 55.1 58.8 53.0 46.8
CIFAR-10 88.5 87.9 N /A 86.7 86.9 86.4 86.3

CIFAR-100 72.3 69.6 N /A 68.8 70.0 69.6 66.4
DTD 73.2 71.3 N /A 71.1 72.8 70.3 70.1

Flowers 92.9 94.2 N /A 92.3 93.5 93.1 90.8
Food-101 67.7 66.6 N /A 63.6 66.1 64.8 63.0

Pets 92.5 90.4 N /A 89.7 90.9 89.2 90.5
SUN397 58.5 56.8 N /A 54.9 57.7 54.8 52.7

Table C.3. Validation accuracy for sparse ResNet50 transfer with linear finetuning using the L-BFGS optimizer

Sparsity STR GMP WoodFisher AC/DC RigL 5x

80% 0.44⇥ 0.50⇥ 0.53⇥ 0.60⇥ 0.71⇥
90% 0.28⇥ 0.36⇥ 0.37⇥ 0.43⇥ 0.50⇥
95% 0.22⇥ N /A 0.28⇥ 0.32⇥ 0.36⇥

Table D.4. Average training time per epoch for linear finetuning using sparse models, as a fraction of the time per epoch required for the
dense backbone. The numbers shown are computed on the Caltech-101 dataset.



E. Sparse Convolutional Filters
In this section we illustrate the percentage of convolutional filters that are pruned during the training phase of the sparse

ResNet50 models on ImageNet. The numbers presented in Table E.5 show that models pruned using AC/DC have consid-
erably more sparse filters, compared to other sparse models. Similarly, RigL 5x models also have a significant number of
sparse filters at high sparsity (95% sparsity).

Pruned
Filters (%) AC/DC WoodFisher GMP STR RigL ERK

1x
RigL ERK

5x

80% 2.9% 0.9% 1.6% 0.5% 0.2% 0.6%
90% 8.5% 2.0% 2.8% 2.0% 1.2% 2.7%
95% 18% 3.0% N/A 6.0% 4.3% 9.1%

Table E.5. Percentage of convolutional filters that are completely masked out, for different pruning methods on ResNet50, at different
sparsity levels. AC/DC has significantly more pruned filters.

F. Experiments on ResNet18 and ResNet34
In this section, we further validate our findings for linear finetuning from ResNet50 on two additional smaller architectures,

namely ResNet18 and ResNet34. Specifically, we test whether regularization pruning methods generally have better transfer
potential than progressive sparsification methods, and whether regularization pruning methods improve over dense models for
fine-grained classification tasks. For this purpose, we trained AC/DC and GMP on ImageNet using ResNet18 and ResNet34
models, for 80% and 90% sparsity, using the same hyperparameters as for ResNet50. For both ResNet18 and ResNet34,
there was a fairly large gap in ImageNet validation accuracy between GMP and AC/DC for both 80% and 90% sparsity, in
favor of GMP, which almost recovered the baseline accuracy at 80% sparsity.

We show the results for linear finetuning using AC/DC and GMP in Table F.6 for ResNet18, respectively Table F.7 for
ResNet34. Interestingly, despite the larger gap in ImageNet validation accuracy between GMP and AC/DC (with GMP being
closer to the dense baseline), AC/DC tends to outperform GMP in terms of transfer performance, on most of the downstream
tasks. Furthermore, we observe that AC/DC tends to transfer better than the dense baseline, especially for specialized or
fine-grained downstream tasks. These observations confirm our findings for linear finetuning on ResNet50.

Pruning Strategy Dense GMP 80% GMP 90% AC/DC 80% AC/DC 90%
Task

Aircraft 47.7 ± 0.1 45.5 ± 0.1 45.6 ± 0.1 48.0 ± 0.1 48.1 ± 0.1
Birds 49.4 ± 0.1 49.3 ± 0.1 48.1 ± 0.0 50.2 ± 0.0 48.7 ± 0.1

CIFAR-10 87.2 ± 0.0 87.4 ± 0.0 87.2 ± 0.0 87.4 ± 0.0 87.2 ± 0.1
CIFAR-100 68.9 ± 0.0 68.1 ± 0.0 69.1 ± 0.0 69.6 ± 0.1 68.9 ± 0.0
Caltech-101 89.4 ± 0.3 89.8 ± 0.3 88.6 ± 0.2 89.0 ± 0.2 88.2 ± 0.4
Caltech-256 79.4 ± 0.1 78.3 ± 0.1 77.3 ± 0.1 78.8 ± 0.1 77.3 ± 0.1

Cars 45.6 ± 0.1 45.0 ± 0.1 44.4 ± 0.1 46.2 ± 0.1 46.7 ± 0.1
DTD 68.1 ± 0.1 68.2 ± 0.3 66.9 ± 0.2 68.6 ± 0.2 68.4 ± 0.2

Flowers 89.0 ± 0.1 89.3 ± 0.1 89.3 ± 0.1 89.9 ± 0.1 90.2 ± 0.1
Food-101 64.9 ± 0.0 65.0 ± 0.0 64.6 ± 0.0 65.6 ± 0.0 65.3 ± 0.0

Pets 90.1 ± 0.1 89.8 ± 0.1 89.4 ± 0.2 89.7 ± 0.1 89.4 ± 0.1
SUN397 54.8 ± 0.1 53.8 ± 0.1 52.9 ± 0.1 54.8 ± 0.1 53.5 ± 0.1

Table F.6. Transfer accuracy for different pruning methods for linear finetuning on ResNet18

G. Experiments on MobileNetV1
The MobileNet [31] architecture is a natural choice for devices with limited computational resources. We measure the

results of sparse transfer with full and linear finetuning on the same downstream tasks starting from dense ImageNet models
pruned using regularization-based and progressive sparsification methods. Specifically, we use AC/DC, STR for regulariza-
tion methods and M-FAC [16] for the progressive sparsification category.



Pruning Strategy Dense GMP 80% GMP 90% AC/DC 80% AC/DC 90%
Task

Aircraft 45.8 ± 0.2 43.5 ± 0.2 44.9 ± 0.1 48.7 ± 0.1 50.7 ± 0.2
Birds 52.9 ± 0.0 53.0 ± 0.1 53.0 ± 0.1 54.5 ± 0.1 54.2 ± 0.1

CIFAR-10 89.5 ± 0.0 89.1 ± 0.0 88.5 ± 0.0 89.6 ± 0.0 89.0 ± 0.0
CIFAR-100 71.0 ± 0.0 70.4 ± 0.1 70.2 ± 0.1 72.0 ± 0.0 72.0 ± 0.0
Caltech-101 92.5 ± 0.2 91.8 ± 0.3 90.9 ± 0.2 92.0 ± 0.3 91.8 ± 0.4
Caltech-256 82.2 ± 0.1 81.8 ± 0.0 81.4 ± 0.1 82.3 ± 0.1 81.2 ± 0.1

Cars 47.3 ± 0.1 46.0 ± 0.1 45.6 ± 0.1 48.5 ± 0.1 49.0 ± 0.1
DTD 69.5 ± 0.1 68.6 ± 0.5 68.6 ± 0.2 70.4 ± 0.3 69.6 ± 0.2

Flowers 88.1 ± 0.1 88.5 ± 0.1 89.0 ± 0.1 90.0 ± 0.1 91.1 ± 0.1
Food-101 66.8 ± 0.0 66.7 ± 0.0 67.4 ± 0.0 68.2 ± 0.0 68.8 ± 0.0

Pets 92.0 ± 0.1 92.5 ± 0.1 91.4 ± 0.1 91.7 ± 0.1 91.1 ± 0.2
SUN397 55.9 ± 0.1 55.4 ± 0.1 55.0 ± 0.1 56.8 ± 0.1 55.6 ± 0.1

Table F.7. Transfer accuracy for different pruning methods for linear finetuning on ResNet34

M-FAC is a framework for efficiently computing high-dimensional inverse-Hessian vector products, which can be applied
to different scenarios that use second-order information. In particular, one such instance is pruning, where M-FAC aims to
solve the same optimization problem as WoodFisher, and thus from this point of view these methods are very similar. In
particular, it has been shown [16] that M-FAC outperforms WoodFisher on ImageNet models, in terms of accuracy at a given
sparsity level. Specifically, for MobileNet, M-FAC surpasses all existing methods at 90% sparsity, reaching 67.2% validation
accuracy. For this reason, we included M-FAC, in favor of WoodFisher, to our list of progressive sparsification methods for
MobileNetV1.

Due to the smaller size of the MobileNetV1 architecture, we additionally test the effect that lower sparsity levels have on
the transfer performance, by training on ImageNet AC/DC models at 30%, 40% and 50% sparsity; these models fully recover
the dense baseline accuracy on ImageNet.

The results on MobileNet are presented in Figure G.3 and Table G.8 for linear finetuning and Figure G.4 and Table G.9
for full finetuning. The results for linear finetuning are obtained after running from five different random seeds, and the mean
and standard deviation are reported. However, the experiments for full finetuning were each run once. For both linear and full
finetuning, we observe that generally the performance decays faster with increased sparsity, compared to ResNet50; this is
expected, given the lower parameter count for MobileNet and the larger gap in ImageNet validation accuracy between dense
and sparse models.

For linear finetuning, we observe AC/DC outperforms STR at both 75% and 90% sparsity. Furthermore, AC/DC tends to
be close to M-FAC at 75% sparsity, while at 90% sparsity M-FAC performs better on almost half of the tasks. Differently from
ResNet50, for MobileNet neither regularization based nor progressive sparsification models outperform the dense baseline,
at higher sparsity (75% and 90%). We observe at lower sparsity (30% and 50%) a few instances where sparse models slightly
outperform the dense baseline (Birds, Cars, DTD), but generally the differences are not significant.

In the case of full finetuning, we observe that the performance of sparse models decays more quickly than for ResNet50,
and even at lower sparsity (30-50%) there is a gap in transfer performance compared to the dense baseline. Furthermore,
AC/DC outperforms STR and M-FAC at both 75% and 90% sparsity on all downstream tasks. Overall, the results for
MobileNet indicate that the transfer performance is significantly affected by the sparsity of the backbone model, for both
linear and full finetuning. Moreover, the experiments on MobileNet seem to suggest that although some of the conclusions
derived from the ResNet experiments are confirmed (e.g. sparse models usually have similar or slightly better performance to
the dense baseline for linear finetuning), the guidelines for the preferred sparsity method in a given scenario might be specific
to the choice of the backbone architecture.

Finally, we consider the accuracy tradeoff of using a smaller network such as MobileNet (4.2M trainable weights) versus
a larger model, ResNet50 (25.5M trainable weights), but pruned to 90% sparsity. Below, we present linear and full finetuning
accuracy results for these two scenarios for an easier comparison. We use the overall best pruning strategy for each type of
transfer on ResNet50: AC/DC for linear finetuning and WoodFisher for full finetuning. Note that these same results are also
presented in Tables C.2 and C.1, G.9, and G.8.

We observe that generally, pruning ResNet50 to 80 or even 90% sparsity results in higher accuracy than MobileNet, for



Figure G.3. (MobileNetV1) Per-dataset downstream validation accuracy for transfer learining with linear finetuning.

Figure G.4. (MobileNetV1) Per-dataset downstream validation accuracy for transfer learining with full finetuning.

Pruning Strategy Dense AC/DC
30%

AC/DC
40%

AC/DC
50%

AC/DC
75%

AC/DC
90%

M-FAC
75%

M-FAC
89%

STR
75%

STR
90%

Task

Aircraft 54.1 ± 0.2 53.5 ± 0.1 54.2 ± 0.1 54.1 ± 0.1 53.5 ± 0.2 52.6 ± 0.3 53.4 ± 0.1 53.7 ± 0.1 49.7 ± 0.1 47.2 ± 0.2
Birds 52.7 ± 0.1 53.0 ± 0.1 53.6 ± 0.1 52.8 ± 0.0 52.6 ± 0.1 50.3 ± 0.1 52.1 ± 0.1 49.2 ± 0.1 49.0 ± 0.0 44.2 ± 0.0

CIFAR-10 88.3 ± 0.1 88.4 ± 0.0 88.1 ± 0.0 87.8 ± 0.0 88.5 ± 0.0 87.4 ± 0.1 87.5 ± 0.0 87.0 ± 0.0 86.9 ± 0.1 85.4 ± 0.0
CIFAR-100 71.9 ± 0.0 70.9 ± 0.1 71.1 ± 0.0 70.2 ± 0.0 70.8 ± 0.0 68.0 ± 0.0 69.3 ± 0.0 68.6 ± 0.0 69.3 ± 0.0 66.3 ± 0.0
Caltech-101 90.3 ± 0.1 89.7 ± 0.1 89.8 ± 0.2 89.7 ± 0.2 89.5 ± 0.1 88.4 ± 0.3 89.2 ± 0.1 87.2 ± 0.1 88.0 ± 0.2 85.2 ± 0.2
Caltech-256 80.2 ± 0.1 80.4 ± 0.0 80.2 ± 0.1 80.5 ± 0.0 79.2 ± 0.0 77.3 ± 0.1 79.0 ± 0.0 76.9 ± 0.0 77.8 ± 0.1 73.8 ± 0.1

Cars 55.5 ± 0.0 55.9 ± 0.1 55.1 ± 0.1 54.9 ± 0.1 54.5 ± 0.1 52.9 ± 0.0 55.9 ± 0.1 54.5 ± 0.1 49.9 ± 0.2 47.1 ± 0.1
DTD 70.8 ± 0.2 70.4 ± 0.2 70.3 ± 0.0 71.4 ± 0.4 70.9 ± 0.2 68.8 ± 0.1 70.7 ± 0.2 69.6 ± 0.2 70.6 ± 0.2 67.2 ± 0.1

Flowers 92.8 ± 0.1 92.6 ± 0.1 92.2 ± 0.1 92.6 ± 0.1 92.6 ± 0.1 91.9 ± 0.1 92.6 ± 0.1 92.0 ± 0.1 91.4 ± 0.1 90.8 ± 0.1
Food-101 70.6 ± 0.0 70.7 ± 0.0 70.6 ± 0.0 70.3 ± 0.0 70.2 ± 0.0 68.6 ± 0.0 69.8 ± 0.0 69.1 ± 0.0 67.7 ± 0.0 65.3 ± 0.0

Pets 90.7 ± 0.1 90.6 ± 0.1 90.5 ± 0.1 90.4 ± 0.1 90.1 ± 0.1 89.0 ± 0.1 89.9 ± 0.1 88.5 ± 0.1 89.3 ± 0.1 86.9 ± 0.2
SUN397 57.1 ± 0.0 57.2 ± 0.1 57.2 ± 0.0 56.8 ± 0.0 56.0 ± 0.0 53.8 ± 0.0 56.3 ± 0.1 54.6 ± 0.0 55.1 ± 0.0 52.5 ± 0.0

Table G.8. Transfer accuracy for linear finetuning using sparse MobileNet models

both linear and full finetuning. However, in almost all cases, the gap is below 5%. This finding confirms conventional wisdom
that training and pruning large networks generally results in higher accuracy than training dense small networks from scratch.

H. Impact of fully connected layer bias on full finetuning transfer accuracy
In our experiments, we used the original architectures used to train the upstream ImageNet models when performing

transfer with full-finetuning, only resizing the final layer to match the number of output classes in the downstream task. This
choice was necessitated partially by ensuring that the weights were applied correctly. For example, the RigL models were
trained using TensorFlow, which uses slightly different Convolution and MaxPooling padding conventions than PyTorch.



Pruning Strategy Dense AC/DC
30%

AC/DC
40%

AC/DC
50%

AC/DC
75%

AC/DC
90%

M-FAC
75%

M-FAC
89%

STR
75%

STR
90%

Aircraft 80.9 79.7 80.1 79.9 79.0 76.9 76.6 74.5 74.4 73.0
Birds 66.6 66.3 66.5 65.5 63.4 59.5 62.9 58.5 56.1 53.1

CIFAR-10 95.7 95.6 95.5 95.4 95.0 94.2 94.5 93.4 93.8 93.3
CIFAR-100 81.6 81.0 81.3 81.0 80.0 77.7 78.8 76.1 77.2 75.1
Caltech-101 91.0 89.6 89.5 90.0 88.0 87.9 86.8 84.6 85.1 83.4
Caltech-256 80.9 81.2 80.9 81.1 80.0 78.0 79.4 77.2 76.7 73.2

Cars 87.5 87.6 87.6 87.3 86.5 84.0 84.9 82.4 84.1 81.5
DTD 73.6 71.4 72.3 72.3 71.8 71.1 71.2 69.1 70.4 69.6

Flowers 93.9 94.1 94.0 93.9 93.4 92.6 91.9 90.9 89.8 90.6
Food-101 85.2 85.0 85.1 84.7 83.6 81.8 83.4 80.8 81.2 79.7

Pets 91.3 90.8 90.7 90.2 89.9 88.2 88.9 86.7 86.9 85.3
SUN397 60.7 60.7 60.3 60.2 59.2 57.1 58.2 55.9 55.1 53.8

Table G.9. Transfer accuracy for full finetuning using sparse MobileNet models

Model MobileNet
Dense

ResNet50
AC/DC 80%

ResNet50
AC/DC 90%

Aircraft 54.1 ± 0.2 55.1 ± 0.1 55.5 ± 0.1
Birds 52.7 ± 0.1 58.4 ± 0.0 58.7 ± 0.0

CIFAR-10 88.3 ± 0.1 90.9 ± 0.0 91.0 ± 0.0
CIFAR-100 71.9 ± 0.0 74.7 ± 0.1 74.3 ± 0.0
Caltech-101 90.3 ± 0.1 92.4 ± 0.2 92.5 ± 0.1
Caltech-256 80.2 ± 0.1 84.6 ± 0.1 84.5 ± 0.0

Cars 55.5 ± 0.0 56.6 ± 0.0 56.0 ± 0.1
DTD 70.8 ± 0.2 74.4 ± 0.1 73.7± 0.2

Flowers 92.8 ± 0.1 92.7 ± 0.1 92.4 ± 0.0
Food-101 70.6 ± 0.0 73.8 ± 0.0 73.8 ± 0.0

Pets 90.7 ± 0.1 92.3 ± 0.1 91.9 ± 0.1
SUN397 57.1 ± 0.0 60.4 ± 0.0 59.8 ± 0.1

Table G.10. Comparison of MobileNet dense versus
ResNet50 sparse models when transferring with linear
finetuning

Model MobileNet
Dense

ResNet50
WoodFisher 80%

ResNet50
WoodFisher 90%

Aircraft 80.9 84.8 ± 0.2 84.5 ± 0.4
Birds 66.6 72.4 ± 0.4 71.6 ± 0.2

CIFAR-10 95.7 97.2 ± 0.1 97.0 ± 0.1
CIFAR-100 81.6 85.1 ± 0.1 84.4 ± 0.2
Caltech-101 91.0 93.7 ± 0.1 93.9 ± 0.3
Caltech-256 80.9 85.1 ± 0.1 84.0± 0.1

Cars 87.5 90.5 ± 0.2 90.0 ± 0.2
DTD 73.6 75.4 ± 0.3 75.5 ± 0.4

Flowers 93.9 95.5 ± 0.2 95.5 ± 0.3
Food-101 85.2 87.4 ± 0.1 87.0 ± 0.1

Pets 91.3 93.3 ± 0.3 92.7 ± 0.3
SUN397 60.7 62.8 ± 0.1 62.3 ± 0.1

Table G.11. Comparison of MobileNet dense versus ResNet50
sparse models when transferring with full finetuning

Likewise, STR models were trained using a slightly nonstandard PyTorch implementation of ResNet50, which did not use a
bias term in the final Fully-Connected (FC) layer. We investigate the possibility that the latter difference could have an effect
on downstream transfer accuracy. To do so, we transferred a set of 80% sparse ResNet50 STR models to all downstream
tasks, using a bias term in the FC layer. The results are shown in Table H.12. Additionally, we perform a similar comparison
on MobileNetV1, for STR models at 75% sparsity. As in the case of ResNet50, the version of MobileNet used by the
STR models does not use bias in the final classification layer. The results illustrating the bias effect on full finetuning for
MobileNet are presented in Table H.13. We observe that the presence of a bias term in the final layer can, in some cases, have
a small positive effect on the resulting model, and so we caution that these effects be considered when choosing a transfer
architecture.

I. Impact of label smoothing on transfer accuracy
We take advantage of the fact that we have STR checkpoints trained with and without label smoothing (LS) to investigate

the effect of LS on dense and sparse transfer accuracy in the context of linear transfer. As Table I.14 shows, label smoothing
tends to have a negative effect on transfer accuracy (confirming the results in [36]). However, our experiments suggest that
this effect is more pronounced on the Aircraft and Cars datasets in the case of sparse STR models, and generally for most
specialized datasets for the dense models. Furthermore, we observe that the performance gap tends to narrow with increased
sparsity. We also note that even with label smoothing, at 80% sparsity STR matches or outperforms GMP on all datasets,
although the effect largely reverses at 90% sparsity.



Dataset With FC Bias Without FC Bias

Aircraft 79.8 ± 0.6 79.8 ± 0.3
Birds 67.9 ± 0.2 68.1 ± 0.1

CIFAR-10 96.5 ± 0 96.5 ± 0.1
CIFAR-100 83.7 ± 0.2 83.6 ± 0.2
Caltech-101 91.2 ± 0.2 90.7 ± 0.6
Caltech-256 84.4 ± 0.1 84.0 ± 0.1

Cars 87.7 ± 0.1 87.8 ± 0.1
DTD 74.4 ± 0.2 73.7 ± 0.6

Flowers 94 ± 0.1 93.7 ± 0.2
Food-101 86 ± 0.1 85.9 ± 0.1

Pets 92.1 ± 0.1 92.1 ± 0.1
SUN397 63.2 ± 0.1 62.6 ± 0.1

Table H.12. Top-1 validation accuracy on ResNet50 trained using
STR on ImageNet, with using bias in the FC layer versus without.
The original model architecture does not use bias in the FC layer.

Dataset With FC Bias Without FC Bias

Aircraft 74.2 74.4
Birds 56.4 56.1

CIFAR-10 93.9 93.8
CIFAR-100 77.5 77.2
Caltech-101 86.3 85.1
Caltech-256 76.9 76.7

Cars 83.8 84.1
DTD 71.8 70.4

Flowers 90.4 89.8
Food-101 80.9 81.2

Pets 87.9 86.9
SUN397 56.1 55.1

Table H.13. Top-1 validation accuracy on MobileNetV1 trained
using STR on ImageNet, with bias in the FC layer versus without.
The original model architecture does not use bias in the FC layer.

Overall, these data can be taken as a preliminary confirmation of the importance of controlling for variation in hyperpa-
rameters when comparing the transfer performance of various training and pruning methods.

Dense Dense LS STR 80% STR LS 80% STR 90% STR LS 90% STR 95% STR LS 95% STR 98% STR LS 98%
Dataset

Aircraft 49.2 ± 0.1 38.2 ± 0.1 53.7 ± 0.0 47.0 ± 0.0 52.9 ± 0.1 46.4 ± 0.1 50.3 ± 0.1 46.6 ± 0.1 48.0 ± 0.1 45.2 ± 0.1
Birds 57.7 ± 0.1 52.4 ± 0.0 56.2 ± 0.1 56.4 ± 0.0 55.2 ± 0.1 56.0 ± 0.0 52.1 ± 0.1 51.7 ± 0.1 43.7 ± 0.0 45.6 ± 0.0

CIFAR-10 91.2 ± 0.0 89.6 ± 0.0 91.4 ± 0.0 90.1 ± 0.0 90.6 ± 0.0 89.4 ± 0.0 89.1 ± 0.0 88.6 ± 0.0 86.5 ± 0.0 86.0 ± 0.0
CIFAR-100 74.6 ± 0.1 71.6 ± 0.0 74.7 ± 0.0 73.3 ± 0.0 73.7 ± 0.1 72.2 ± 0.1 71.7 ± 0.0 70.1 ± 0.0 67.4 ± 0.0 66.3 ± 0.0
Caltech-101 91.9 ± 0.1 91.6 ± 0.1 91.2 ± 0.1 92.6 ± 0.1 90.9 ± 0.1 91.1 ± 0.2 90.0 ± 0.2 89.8 ± 0.1 86.3 ± 0.1 85.4 ± 0.1
Caltech-256 84.8 ± 0.1 84.6 ± 0.1 83.6 ± 0.0 84.3 ± 0.0 82.6 ± 0.0 82.6 ± 0.1 80.2 ± 0.1 79.7 ± 0.0 73.4 ± 0.1 73.8 ± 0.0

Cars 53.4 ± 0.1 44.9 ± 0.1 57.0 ± 0.1 50.9 ± 0.0 54.8 ± 0.1 49.8 ± 0.1 50.5 ± 0.1 46.9 ± 0.1 44.4 ± 0.1 42.5 ± 0.1
DTD 73.5 ± 0.2 72.3 ± 0.1 74.3 ± 0.2 73.9 ± 0.3 73.8 ± 0.1 73.7 ± 0.2 72.1 ± 0.2 71.9 ± 0.1 68.4 ± 0.2 68.3 ± 0.1

Flowers 91.6 ± 0.1 86.7 ± 0.1 93.0 ± 0.0 91.2 ± 0.0 93.0 ± 0.1 92.1 ± 0.1 91.9 ± 0.1 91.0 ± 0.1 90.8 ± 0.1 90.4 ± 0.1
Food-101 73.2 ± 0.0 69.5 ± 0.0 73.9 ± 0.0 72.2 ± 0.0 72.6 ± 0.0 71.1 ± 0.0 70.7 ± 0.0 68.8 ± 0.0 65.3 ± 0.0 64.3 ± 0.0

Pets 92.6 ± 0.1 92.9 ± 0.1 91.7 ± 0.0 92.4 ± 0.1 91.1 ± 0.1 91.7 ± 0.1 89.8 ± 0.1 90.1 ± 0.1 85.5 ± 0.1 86.6 ± 0.1
SUN397 60.1 ± 0.0 59.3 ± 0.1 60.3 ± 0.0 60.0 ± 0.1 58.2 ± 0.0 58.5 ± 0.1 56.3 ± 0.0 55.8 ± 0.0 50.9 ± 0.0 51.0 ± 0.0

Table I.14. Linear Finetuning Validation Accuracy of STR-pruned and dense models with and without label smoothing.

J. Finetuning with structured sparsity

In this section, we examine the transfer properties of models that were sparsified using structured pruning methods, which
remove entire convolutional filters. Specifically, we use both ResNet50 and MobileNetV1 models trained on ImageNet and
we do full finetuning on all twelve downstream tasks.

J.1. ResNet50 with structured sparsity

We consider a ResNet50 model that was pruned with progressive sparsification, using the L1 magnitude of the convolu-
tional filters as a pruning criterion. The resulting model has an ImageNet validation accuracy of 75.7% and results in 2.2x
inference speed-up compared to the dense baseline, when evaluated on a single sample; this makes it comparable to unstruc-
tured 90% sparse models that achieve a similar inference speed-up (please see Table D.4). The results for full finetuning with
the structured sparse model, together with the best results for dense and unstructured 80% and 90% models are presented
in Table J.15. We observe that models with structured sparsity transfer similarly to or worse than unstructured 90% sparse
models. Note that the unstructured ResNet50 model has higher ImageNet accuracy compared to 90% sparse models, at a
similar inference speed-up. These results align with the observations made in Section 3.5, that having fewer filters in the
structured sparse models limits their capability of expressing features.



Dataset Dense Structured Best 80% Best 90%

Aircraft 83.6± 0.4 81.8± 0.5 84.8± 0.2 84.9 ± 0.3
Birds 72.4 ± 0.3 70.7± 0.1 73.4± 0.1 72.9± 0.2

Caltech101 93.5± 0.1 92.8± 0.1 93.7± 0.1 93.9 ± 0.3
Caltech256 86.1 ± 0.1 84.6± 0.1 85.4± 0.2 84.8± 0.1

Cars 90.3± 0.2 89.4± 0.0 90.5 ± 0.2 90.0± 0.2
CIFAR-10 97.4 ± 0. 97.1± 0.1 97.2± 0.1 97.1± 0.

CIFAR-100 85.6 ± 0.2 84.7± 0.2 85.1± 0.1 84.4± 0.2
DTD 76.2 ± 0.3 75.2± 0.2 75.7 ± 0.5 75.5 ± 0.4

Flowers 95.0± 0.1 95.2± 0.0 96.1 ± 0.1 96.1 ± 0.1
Food-101 87.3 ± 0.1 86.3± 0.1 87.4 ± 0.1 87.3 ± 0.2

Pets 93.4 ± 0.1 92.5± 0.1 93.4 ± 0.2 92.7± 0.3
SUN397 64.8 ± 0. 63.4± 0.1 64.0± 0. 63.0± 0.

Table J.15. (ResNet50) Comparison on full finetuning between
dense baseline, models with structured sparsity, and best results
for unstructured 80% and 90% sparsity.

Dataset Dense 50% Time 50% FLOPs

Aircraft 80.9 82.9 83.0
Birds 66.6 66.1 66.1

Caltech101 91.0 88.6 88.9
Caltech256 80.9 78.6 78.4

Cars 87.5 88.4 88.3
CIFAR-10 95.7 95.2 95.3

CIFAR-100 81.6 79.9 80.2
DTD 73.6 71.1 72.2

Flowers 93.9 94.1 94.1
Food-101 85.2 84.6 84.5

Pets 91.3 91.0 91.0
SUN397 60.7 59.4 59.1

Table J.16. (MobileNet) Full finetuning validation accuracy for
MobileNet models with structured sparsity, at 50% inference time
or 50% inference FLOPs.

Type all 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

box 32.62 54.05 51.96 48.72 44.81 40.84 34.72 26.89 17.33 6.33 0.55
mask 30.74 50.28 47.66 44.57 41.02 36.39 31.47 25.53 18.55 10.03 1.91

Table K.17. Mean average precision for dense transfer on Pascal, at various thresholds.

Type all 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

box 33.55 54.15 51.79 49.2 45.57 41.51 35.95 29.2 19.66 7.78 0.74
mask 31.5 50.66 47.89 45.04 41.67 37.32 32.39 26.35 19.98 11.22 2.5

Table K.18. Mean average precision for sparse transfer on Pascal, at various thresholds. Notice the similar or slightly improved accuracy.

J.2. MobileNet with structured sparsity
We additionally perform full finetuning using MobileNet models pruned for structured sparsity. For these experiments,

we use the upstream models provided in [27]; specifically, we use the MobileNet models that achieve 50% of the inference
time or have 50% of the dense FLOPs. These models achieve 70.2% and 70.5% ImageNet validation accuracy, respectively.
The results presented in Table J.16 show that in general models with structured sparsity perform similar to or worse than their
dense counterparts, with the exception of Aircraft and Cars where these models significantly outperform the dense baseline.

K. Sparse Transfer Learning for Segmentation
To complement the experiments for object detection, we executed transfer learning for a YOLACT model [3] using a

ResNet-101 backbone, that has been trained and sparsified on the segmentation version of the COCO dataset. The average
sparsity of the model is ⇠ 87%, obtained via gradual magnitude pruning (GMP). The model has mAP@0.5 values 49.36
(bounding box), and 46.37 (mask), versus 50.16 (bounding box), 46.57 (mask) for the dense model on COCO. We transfer
the pruned trained weights onto the Pascal dataset. The prediction heads get initialized as dense, and kept dense for transfer.
The results are presented in Tables K.17 and K.18, and show that indeed sparse transfer is competitive against the dense
variant in this case as well.

L. Distillation from Sparse Teachers
Our linear finetuning experiments suggest that sparse models may provide superior representations relative to dense ones.

To further test this hypothesis, we employ sparse models as teachers in a standard knowledge distillation (KD) setting, i.e.
training a ResNet34 student model with distillation from a ResNet50 teacher, which may be dense or sparse. The accuracy
of the resulting models is provided in Table L.19.



Results suggest that differences in accuracy between the sparse and dense teachers do not affect distillation. Sparse
teachers will also reduce distillation overhead due to faster inference.

Baseline Dense KD AC/DC
80%

WoodFisher
80%

AC/DC
90%

WoodFisher
90%

73.83% 74.42% 74.64% 74.63% 74.19% 74.44%

Table L.19. Top-1 validation accuracy on ResNet34 trained on ImageNet, when distilling from dense or sparse teachers.


