
Towards real-world navigation with deep differentiable planners

Appendix A.
A.1. Implicit assumptions of the VIN architecture

Differences between VIN and the idealised VI on a grid.
Comparing eq. 1 in sec. 3 to eq. 2 in sec. 3.1, we note
several differences:
1. The VIN value estimate V takes the maximum action-
value Q across all possible actions A, even illegal ones
(e.g. moving into an obstacle). Similarly, the Q estimate is
also updated even for illegal actions. In contrast, VI only
considers legal actions for each state (cell), i.e. A(i, j).
2. The VIN reward R̂ is assumed independent of the action.
This means that, for example, a transition between two states
cannot be penalised directly; a penalty must be assigned to
one of the states (regardless of the action taken to enter it).
3. The VIN transition probability is expanded into 2 terms,
PR which affects the reward and PV which affects the esti-
mated values. This decoupling means that they do not enjoy
the physical interpretability of VI’s P (i.e. probability of
state transitions), and rewards and values can undergo very
different transition dynamics.
4. Unlike the VI, the VIN considers the state transition
translation-invariant. This means that it cannot model obsta-
cles (illegal transitions) using P , and must rely on assigning
a high penalty to the reward R̂ of those states instead.

A.2. Implementation details

A.2.1 Embodied pose states

One of our contributions is extending the VIN framework to
accommodate embodied pose states, i.e. states which encode
both position and orientation. We achieve this by augmenting
the 2D state-space with an extra dimension for orientations.
Table 1 shows correspondences between tensor dimensions
of the positional method and the embodied method for each
component of the architecture. X and Y are the size of the
internal spatial discretisation of the environment, M is the
internal discretisation of the orientation, A is the number of
actions, and K is the kernel dimension for spatial locality.

Note that the value iteration step in CALVIN performs
a 2D convolution of P̂ over a 2D value map in the case of
positional states and a 3D convolution over a 3D value map
with orientation in the case of embodied pose states. In the
embodied case, the second dimension of P̂ corresponds to

the orientation of the current state, and the third dimension
corresponds to that of the next state.

Table 1. Comparison of individual components in the implemen-
tation of CALVIN for positional states and for embodied pose
states.

Positional Embodied
State s (x, y) (θ, x, y)
VI step Conv2d Conv3d
V (s) X × Y M ×X × Y
Q(s, a) A×X × Y A×M ×X × Y
Â(s, a) A×X × Y A×M ×X × Y
P̂ A×K ×K A×M ×M ×K ×K
R̂ A×K ×K A×M ×M ×K ×K

A.2.2 3D embeddings for geometric reasoning

Since the learnable functions (P̂ , Â and R̂) in our proposed
method (and other VIN-based methods) are 2D CNNs, their
natural input is a 2D grid of m-dimensional embeddings,
denoted etij ∈ Rm, for time t and discrete world-space co-
ordinates (i, j). This can be interpreted as a spatio-temporal
map tensor. We then wish to project and aggregate useful
semantic information from an image It, extracted by a CNN
φ, into this tensor. This requires both knowledge of the cam-
era position ct and rotation matrix Rt, which we assume
following previous work [4, 8, 11] (and which can be esti-
mated from monocular vision [10]). Spatial projection also
requires knowing (or estimating) the depths dt(p) of each
pixel p in It (either with a RGBD camera as in our exper-
iments, or monocular depth estimation [3]). We can then
write the homogenous 3D coordinates of each pixel p in the
absolute reference frame using projective geometry [6]:

[xt(p), yt(p), zt(p), 1] = ct +RtK [p1, p2, dt(p), 1]
>
,

(1)
where K is the camera’s intrinsics matrix. Given these ab-
solute coordinates of pixel p, we can calculate the closest
map embedding etij to it, and thus aggregate the CNN em-
beddings φ (It) associated with all pixels close to a map cell.
Inspired by PointNet [2], we choose mean-pooling for ag-
gregation. Since we have spatial aggregation, we can easily

1



extend this framework to work spatio-temporally, aggregat-
ing information from past frames t′ ≤ t. More formally:

etij = avgt′≤t {φp (It′) : τi ≤ xt′(p) < τ(i+ 1),

τj ≤ yt′(p) < τ(j + 1),

τk ≤ zt′(p) < τ(k + 1), p ∈ It′} (2)

where τ is the absolute size of each square grid cell, avg av-
erages the elements of a set, and φp (It′) retrieves the CNN
embedding of image It′ for pixel p. Due to the similarity
between Eq. 2 and a PointNet embedded on a 2D lattice,
we named it Lattice PointNet (LPN). Other than the lattice
embedding, there are other major differences from the Point-
Net: we apply it spatio-temporally with a causal constraint
(t′ ≤ t), and the downstream predictors that take it as input
(P̂ (et), Â(et) and R̂(et)) are 2D CNNs that can reason spa-
tially in the lattice, as opposed to the PointNet’s unstructured
multi-layer perceptrons [2]. A related proposal for SLAM
used spatial max-pooling but more complex LSTMs/GRUs
for temporal aggregation [1, 7]. Another related work on
end-to-end trainable spatial embeddings uses egospherical
memory [9].

A.2.3 Architectural design of Lattice PointNet

The Lattice PointNet described in Appendix A.2.2 consists
of three stages: a CNN that extracts embeddings from ob-
servations in image-space (image encoder), a spatial ag-
gregation step (eq. 10 in sec. 4.2.2) that performs mean
pooling of embeddings for each map cell, and another CNN
that refines the map embedding (map encoder). The image
encoder consists of two CNN blocks, each consisting of
the following layers in order: optional group normalisation,
2D convolution, dropout, ReLU and 2D max pooling. The
map encoder consists of 2D convolution, dropout, ReLU,
optional group normalisation, and finally, another 2D convo-
lution. The number of channels of each convolutional layer
are (80, 80, 80, 40) for MiniWorld and (40, 40, 40, 20) for
AVD respectively. The point clouds can consume a signifi-
cant amount of memory for long trajectories. Hence, we use
the most recent 40 frames for the 8× 8 MiniWorld maze.

The input to the LPN is a 3-channel RGB image for
the MiniWorld experiment, and a 128-channel embedding
extracted using the first 2 blocks of ResNet18 pre-trained on
ImageNet for the AVD experiment.

A.2.4 Architectural design of the CNN backbone

This CNN backbone is used in a control experiment in Ap-
pendix A.4.2 to show the effectiveness of the LPN backbone.
In contrast to LPN which performs spatial aggregation of
embeddings, the CNN backbone is a direct application of an
encoder-decoder architecture that transforms image-space
observations into map-space embeddings. Gupta et al. [4]

employed a similar architecture to obtain their map embed-
dings. While they use ResNet50 as the encoder network, we
used a simple CNN for the MiniWorld experiment to match
the result obtained with LPN.

The CNN backbone consists of three stages: a CNN en-
coder, two fully-connected layers with ReLU to transform
embeddings from image-space to map-space, and a CNN
decoder. The encoder consists of 3 blocks of batch normali-
sation, 2D convolution, dropout, ReLU and 2D max pooling,
and a final block with just batch normalisation and 2D convo-
lution. The number of channels of each convolutional layer
are (64, 128, 128, 128), respectively.

The fully-connected layers take in an input size of 128×
5× 7, reduces it to a hidden size of 128, and outputs either
128×5×5 for the smaller maze or 128×4×4 for the larger
maze, which is then passed to the decoder.

The decoder consists of 3 blocks of batch normalisa-
tion, 2D deconvolution, dropout and ReLU, and a final
block with just 2D deconvolution. The number of channels
of each deconvolution layers are (128, 128, 64, 20), respec-
tively. The output size of the decoder depends on the map
resolution, hence we chose appropriate strides, kernel sizes
and paddings in the decoder network to match the output
sizes of 30× 30 and 80× 80. This approach is not scalable
to maps with high resolution or with arbitrary size, which is
one of the drawbacks of this approach.

A.3. Experiment setup

A.3.1 Expert trajectory generation

Expert trajectories are generated by running an A* [5] plan-
ner from the start state to the target state. We assigned
Euclidean costs to every transition in the 2D grid environ-
ments, and a cost of 1 per move for the MiniWorld and AVD
environments. In the case of MiniWorld, an additional cost
is assigned to locations near obstacles to ensure that the
trajectories are not in close proximity to the walls.

A.3.2 Hyperparameter choies

Similarly to VIN [11] which uses a 2-layer CNN to predict
the reward map, and GPPN [8], which uses a 2-layer CNN to
produce inputs to the LSTM, CALVIN uses a 2-layer CNN as
an available actions predictor Â(s, a). For each experiment,
we chose the size of the hidden layer from {40, 80, 150}.
150 was used for all the grid environments, 80 for MiniWorld
and 40 for AVD, partially due to memory constraints.

VIN has an additional hyperparameter for the number
of hidden action channels, which we set to 40, which is
sufficiently bigger than the number of actual actions in all
of our experiments. While the kernel size K for VIN and
CALVIN were set to 3 for experiments in the grid environ-
ment, it was noted in [8] that GPPN works better with larger
kernel size. Therefore, we chose the best kernel size out



of {3, 5, 7, 9, 11} for GPPN. For experiments on MiniWorld
and AVD, there are state transitions with step size of 2, hence
we chose K = 5 for VIN and CALVIN.

The number of value iteration steps k was chosen from
{20, 40, 60, 80, 100}. For trajectory reweighting, β was cho-
sen from {0.1, 0.25, 0.5, 0.75, 1.0}.

A.3.3 Rollout at test time

We test the performance of the model by running navigation
trials (rollouts) on a randomly generated environment. At
every time step, the model is queried the set of Q-values
{Q(s, a) : a ∈ A} for the current state s, and an action
which gives the maximum predicted Q value is taken.

While VIN is trained with V (0) initialised with zeros, in
a true Value Iteration algorithm, the value function must con-
verge for an optimal policy to be obtained. To help the value
function converge faster under a time and compute budget,
we initialise the value function with predicted values from
the previous time step at test time with online navigation.

We set a limit to the maximum number of steps taken by
the agent, which were 200 for the fully-known 15× 15 grid,
500 for the partially known grid, 300 for MiniWorld (3× 3),
1000 for MiniWorld (8× 8), and 100 for AVD.

A.4. Additional experiments

A.4.1 Ablation study of removing loss components

CALVIN is trained on three additive loss components: a loss
term for the predicted Q-values LQ (sec.4.1.1), a loss term
for the transition models LP (sec.4.1.2), and a loss term for
the action availability LA (sec.4.1.3). We assessed the con-
tribution of each loss component to the overall performance.

We conducted the experiments on the partially observable
grid environment (sec. 5.1.2). The results in Tab. 2 indicate
that all loss components, in particular the transition model
loss, contributes to the robust performance of the network.

Table 2. Navigation success rate of CALVIN in partially observable
2D mazes with loss components removed.

Loss LQ + LP + LA LQ + LP LQ + LA

Success rate 92.2 84.1 8.3

A.4.2 Comparison of LPN against CNN backbone

We compared our proposed LPN backbone against a typical
encoder-decoder CNN backbone as a component that maps
observations to map embeddings. We evaluated the perfor-
mance of the two methods for VIN, GPPN and CALVIN. In
Tab. 3, we observe that LPN backbone is highly effective,
especially for larger environments where long-term planning
based on spatially aggregated embeddings is necessary.

Table 3. Navigation success rate on unseen 3D mazes (MiniWorld).
Most methods do not generalise to larger mazes. The proposed
LPN demonstrates robust performance in larger unseen mazes.

CNN backbone LPN backbone (ours)

Size VIN GPPN CALVIN VIN GPPN CALVIN

3× 3 89.4 73.1 75.2 90.3 91.3 97.7

8× 8 0.6 18.3 8.6 41.2 33.3 69.2

Figure 1. Example rollout of CALVIN after 21 steps (left column),
43 steps (middle column) and 65 steps (right column). CALVIN
successfully terminated at 65 steps. (top row) Input visualisation:
unexplored cells are dark, the discovered target is yellow. The
correct trajectory is dashed, the current one is solid. The orange
circle shows the position of the agent. (bottom row) Predicted
values (higher values are brighter). Explored cells have low values,
while unexplored cells and the discovered target are assigned high
values.

A.5. Example rollout in a partially observable maze

We present an example of a trajectory taken by CALVIN
at runtime, with corresponding observation maps and pre-
dicted values in Figure 1. At each rollout step, CALVIN
performs inference on the best action to take based on its
current observation map. No information about the location
of the target is given until it is within view of the agent. This
makes the problem challenging, since the agent may have to
take significantly more steps compared to an optimal route
to reach the target. In this example, the agent managed to
backtrack every time it encountered a dead end, successfully
reaching the target after 65 steps. The model initially as-
signs high values to all unexplored states. When the target
comes into view, the model assigns a high probability to the
availability of the “done” action at the corresponding state.
The agent learns a sufficiently high reward for a success-
ful termination so that the “done” action is triggered at the
target.



Figure 2. Example rollout of embodied CALVIN after 30 steps (left
column), 60 steps (middle column) and 90 steps (right column).
CALVIN successfully terminated at 91 steps. (first row) Input
visualisation: unexplored cells are dark, the discovered target is
yellow. The correct trajectory is dashed, the current one is solid.
The orange triangle shows the position and the orientation of the
agent. (second row) Predicted rewards (higher values are brighter).
The 3D state-space (position/orientation) is shown, with rewards
for the 8 orientations in a radial pattern within each cell (position).
Explored cells have low rewards, while unexplored cells and the
discovered target are assigned high rewards. (third row) Predicted
rewards averaged over the 8 orientations. (fourth row) Predicted
values following the same convention. Values are higher facing the
direction of unexplored cells and the target (if discovered). (fifth
row) Predicted values averaged over the 8 orientations.

A.6. Comparison of embodied navigation

For visual comparison of CALVIN, VIN and GPPN, we
generated a maze and performed rollouts using each of the
algorithms, assuming partial observability and embodied

Figure 3. Example rollout of embodied VIN after 20 steps (left
column), 40 steps (middle column) and 60 steps (right column).
VIN kept oscillating between the same two states after 57 steps.
The convention is the same as for Fig. 1, except that a single reward
map is shared across all orientations. (first row) Input visualisation.
(second row) Predicted rewards. (third row) Predicted rewards
averaged over the 8 orientations. (fourth row) Predicted values.

navigation.

A.6.1 Rollout of CALVIN

Figure 2 shows an example of a trajectory taken by CALVIN
at runtime, with corresponding observation maps, predicted
values and predicted rewards for taking the “done” action.
Similarly to Appendix A.5, the agent manages to explore un-
visited cells and backtrack upon a dead end until the target is
discovered. One key difference is that now the agent learns to
predict rewards and values for every discretised orientation
as well as the discretised location. Upon closer inspection,
we observe that the predicted values are higher facing the di-
rection of unexplored cells and towards the discovered target.
Since rotation is a relatively low cost operation, in this train-
ing example, the network seems to have learnt to assign high
rewards to a particular orientation at unexplored cells, from
which high values propagate. Rewards and values averaged
over orientations yield a more intuitive visualisation.



Figure 4. Example rollout of embodied GPPN after 15 steps (left
column), 30 steps (middle column) and 45 steps (right column).
GPPN revisits the same sequences of states leading to a dead end
after 45 steps. The convention is the same as for Fig. 1. (first row)
Input visualisation. (second row) Predicted rewards. (third row)
Predicted rewards averaged over the 8 orientations.

A.6.2 Rollout of VIN

A corresponding visualisation for VIN is shown in Fig. 3.
Unlike CALVIN’s implementation of rewards (eq. 5 in sec.
4.1) as a function of discretised states and actions, the “re-
ward map” produced by the VIN does not offer a direct
interpretation, as it is shared across all actions as imple-
mented by Tamar et al. [11], and is also shared across all
orientations in the case of embodied navigation. The val-
ues are also not well learnt, with some of the higher values
appearing in obstacle cells. The unexplored cells are not
assigned sufficiently high values to incentivise exploration
by the agent. In this example, the agent gets stuck and starts
oscillating between two orientations after 57 steps.

A.6.3 Rollout of GPPN

Finally, a visualisation for GPPN is shown in Fig. 4. Un-
like VIN and CALVIN, GPPN does not have an explicit
reward map predictor, but performs value propagation us-
ing an LSTM before outputting a final Q-value prediction.
Similarly to Appendix A.6.2, the values predicted is not
very interpretable, and does not incentivise exploration or
avoidance of dead ends. In this example, the agent keeps
revisiting a dead end that has already been explored in the
first 20 steps.

References
[1] Vincent Cartillier, Zhile Ren, Neha Jain, Stefan Lee, Irfan

Essa, and Dhruv Batra. Semantic mapnet: Building allocen-
tric semantic maps and representations from egocentric views,
2021. 2

[2] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas.
PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 77–85, Hon-
olulu, HI, July 2017. IEEE. 1, 2

[3] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2002–2011, 2018. 1

[4] Saurabh Gupta, Varun Tolani, James Davidson, Sergey
Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
Mapping and Planning for Visual Navigation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017. arXiv: 1702.03920. 1, 2

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics, 1968. 2

[6] R Hartley and A Zisserman. Multiple view geometry in
computer. Vision, 2nd ed., New York: Cambridge, 2003. 1

[7] Joao F. Henriques and Andrea Vedaldi. MapNet: An Al-
locentric Spatial Memory for Mapping Environments. In
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8476–8484, June 2018. ISSN: 1063-6919.
2

[8] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric
Xing, and Ruslan Salakhutdinov. Gated Path Planning Net-
works. arXiv:1806.06408 [cs, stat], June 2018. arXiv:
1806.06408. 1, 2

[9] Daniel James Lenton, Stephen James, Ronald Clark, and
Andrew Davison. End-to-end egospheric spatial memory. In
International Conference on Learning Representations, 2021.
2

[10] Raul Mur-Artal and Juan D. Tardos. ORB-SLAM2: an Open-
Source SLAM System for Monocular, Stereo and RGB-D
Cameras. IEEE Transactions on Robotics, 33(5):1255–1262,
Oct. 2017. arXiv: 1610.06475. 1

[11] Aviv Tamar, YI WU, Garrett Thomas, Sergey Levine, and
Pieter Abbeel. Value Iteration Networks. In D. D. Lee, M.
Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages
2154–2162, 2016. 1, 2, 5


