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Figure 1. Given a caption, we learn a Dream Field, a continuous volumetric
representation of an object’s geometry and appearance learned with guidance
from a pre-trained model. We optimize the Dream Field by rendering images
of the object from random camera poses that are scored with frozen pre-
trained image and text encoders trained on web images and alt-text. 2D
views share the same underlying radiance field for consistent geometry.

Figure 2. Example Dream Fields rendered from four
perspectives. On the right, we show transmittance from
the final perspective. We create diverse outputs using
the compositionality of language; these captions from
MSCOCO describe three flower arrangements with dif-
ferent properties like context and color.

Abstract

We combine neural rendering with multi-modal image and
text representations to synthesize diverse 3D objects solely
from natural language descriptions. Our method, Dream
Fields, can generate the geometry and color of a wide range
of objects without 3D supervision. Due to the scarcity of
diverse, captioned 3D data, prior methods only generate ob-
jects from a handful of categories, such as ShapeNet. Instead,
we guide generation with image-text models pre-trained on
large datasets of captioned images from the web. Our method
optimizes a Neural Radiance Field from many camera views
so that rendered images score highly with a target caption ac-
cording to a pre-trained CLIP model. To improve fidelity and
visual quality, we introduce simple geometric priors, includ-
ing sparsity-inducing transmittance regularization, scene
bounds, and new MLP architectures. In experiments, Dream
Fields produce realistic, multi-view consistent object geome-
try and color from a variety of natural language captions.
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1. Introduction

Detailed 3D object models bring multimedia experiences
to life. Games, virtual reality applications and films are each
populated with thousands of object models, each designed
and textured by hand with digital software. While expert
artists can author high-fidelity assets, the process is painstak-
ingly slow and expensive. Prior work leverages 3D datasets
to synthesize shapes in the form of point clouds, voxel grids,
triangle meshes, and implicit functions using generative mod-
els like GANs [4, 21, 57, 65]. These approaches only sup-
port a few object categories due to small labeled 3D shape
datasets. But multimedia applications require a wide variety
of content, and need both 3D geometry and texture.

In this work, we propose Dream Fields, a method to
automatically generate open-set 3D models from natural
language prompts. Unlike prior work, our method does
not require any 3D training data, and uses natural language
prompts that are easy to author with an expressive interface
for specifying desired object properties. We demonstrate that
the compositionality of language allows for flexible creative
control over shapes, colors and styles.

A Dream Field is a Neural Radiance Field (NeRF) trained
to maximize a deep perceptual metric with respect to both
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the geometry and color of a scene. NeRF and other neural 3D
representations have recently been successfully applied to
novel view synthesis tasks where ground-truth RGB photos
are available. NeRF is trained to reconstruct images from
multiple viewpoints. As the learned radiance field is shared
across viewpoints, NeRF can interpolate between viewpoints
smoothly and consistently. Due to its neural representation,
NeRF can be sampled at high spatial resolutions unlike voxel
representations and point clouds, and are easy to optimize
unlike explicit geometric representations like meshes as it is
topology-free.

However, existing photographs are not available when
creating novel objects from descriptions alone. Instead of
learning to reconstruct known input photos, we learn a radi-
ance field such that its renderings have high semantic similar-
ity with a given text prompt. We extract these semantics with
pre-trained neural image-text retrieval models like CLIP [46],
learned from hundreds of millions of captioned images. As
NeRF’s volumetric rendering and CLIP’s image-text repre-
sentations are differentiable, we can optimize Dream Fields
end-to-end for each prompt. Figure 1 illustrates our method.

In experiments, Dream Fields learn significant artifacts
if we naively optimize the NeRF scene representation with
textual supervision without adding additional geometric con-
straints (Figure 3). We propose general-purpose priors and
demonstrate that they greatly improve the realism of results.
Finally, we quantitatively evaluate open-set generation per-
formance using a dataset of diverse object-centric prompts.
Our contributions include:
• Using aligned image and text models to optimize NeRF

without 3D shape or multi-view data,
• Dream Fields, a simple, constrained 3D representation

with neural guidance that supports diverse 3D object
generation from captions in zero-shot, and
• Simple geometric priors including transmittance regu-

larization, scene bounds, and an MLP architecture that
together improve fidelity.

2. Related Work
Our work is primarily inspired by DeepDream [34] and

other methods for visualizing the preferred inputs and fea-
tures of neural networks by optimizing in image space
[36, 37, 39]. These methods enable the generation of in-
teresting images from a pre-trained neural network without
the additional training of a generative model. Closest to our
work is [35], which studies differentiable image parameteri-
zations in the context of style transfer. Our work replaces the
style and content-based losses from that era with an image-
text loss enabled by progress in contrastive representation
learning on image-text datasets [12, 26, 46, 60]. The use of
image-text models enables easy and flexible control over
the style and content of generated imagery through textual
prompt design. We optimize both geometry and color using

“a large blue bird standing
next to a painting of flowers.”

(c) Dream Fields

(b) Neural Radiance Fields
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Figure 3. Challenges of text-to-3D synthesis: (a) Poor general-
ization from limited 3D datasets: Most 3D generative models are
learned on datasets of specific object categories like ShapeNet [7],
and won’t generalize to novel concepts zero-shot. (b) Neural Ra-
diance Fields are too flexible without multi-view supervision:
NeRF learns to represent geometry and texture from scene-specific
multi-view data, so it does not require a diverse dataset of objects.
Yet, when only a source caption is available instead of multi-view
images, NeRF produces significant artifacts (e.g., near field occlu-
sions). (c) Dream Fields: We introduce general geometric priors
that retain much of NeRF’s flexibility while improving realism.

the differentiable volumetric rendering and scene representa-
tion provided by NeRF, whereas [35] was restricted to fixed
geometry and only optimized texture. Together these ad-
vances enable a fundamentally new capability: open-ended
text-guided generation of object geometry and texture.

Concurrently to Dream Fields, a few early works have
used CLIP [46] to synthesize or manipulate 3D object rep-
resentations. CLIP-Forge [49] generates multiple object
geometries from text prompts using a CLIP embedding-
conditioned normalizing flow model and geometry-only de-
coder trained on ShapeNet categories. Still, CLIP-Forge gen-
eralizes poorly outside of ShapeNet categories and requires
ground-truth multi-view images and voxel data. Text2Shape
[9] learns a text-conditional Wasserstein GAN [1, 19] to
synthesize novel voxelized objects, but only supports fi-
nite resolution generation of individual ShapeNet categories.
In [10], object geometry is optimized evolutionarily for
high CLIP score from a single view then manually col-
ored. ClipMatrix [25] edits the vertices and textures of
human SMPL models [31] to create stylized, deformable hu-
manoid meshes. [44] creates an interactive interface to edit
signed-distance fields in localized regions, though they do
not optimize texture or synthesize new shapes. Text-based
manipulation of existing objects is complementary to us.

For images, there has been an explosion of work that
leverages CLIP to guide image generation. Digital artist
Ryan Murdock (@advadnoun) used CLIP to guide learning
of the weights of a SIREN network [52], similar to NeRF
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but without volume rendering and focused on image gener-
ation. Katherine Crowson (@rivershavewings) combined
CLIP with optimization of VQ-GAN codes [16] and used
diffusion models as an image prior [14]. Recent work from
Mario Klingemann (@quasimondo) and [43] have shown how
CLIP can be used to guide GAN models like StyleGAN [27].
Some works have optimized parameters of vector graph-
ics, suggesting CLIP guidance is highly general [17, 23, 50].
These methods highlighted the surprising capacity of what
image-text models have learned and their utility for guiding
2D generative processes. Direct text to image synthesis with
generative models has also improved tremendously in recent
years [48, 61], but requires training large generative models
on large-scale datasets, making such methods challenging to
directly apply to text to 3D where no such datasets exist.

There is also growing progress on generative mod-
els with NeRF-based generators trained solely from 2D
imagery. However, these models are category-specific
and trained on large datasets of mostly forward-facing
scenes [5, 20, 38, 51, 66], lacking the flexibility of open-set
text-conditional models. Shape-agnostic priors have been
used for 3D reconstruction [2, 58, 64].

3. Background

Our method combines Neural Radiance Fields (NeRF)
[33] with an image-text loss from [46]. We begin by dis-
cussing these existing methods, and then detail our improved
approach and methodology that enables high quality text to
object generation.

3.1. Neural Radiance Fields

NeRF [33] parameterizes a scene’s density and color us-
ing a multi-layer perceptron (MLP) with parameters θ trained
with a photometric loss relying on multi-view photographs
of a scene. In our simplified model, the NeRF network takes
in a 3D position x and outputs parameters for an emission-
absorption volume rendering model: density σθ(x) and color
cθ(x). Images can be rendered from desired viewpoints by
integrating color along an appropriate ray, r(t), for each
pixel according to the volume rendering equation:

C(r, θ) =

∫ tf

tn

T (r, t)σθ(r(t))cθ(r(t))dt, (1)

where T (r, θ, t) = exp

(
−
∫ t

tn

σθ(r(s))ds

)
. (2)

The integral T (r, θ, t) is known as “transmittance” and de-
scribes the probability that light along the ray will not be
absorbed when traveling from tn (the near scene bound) to
t. In practice [33], these two integrals are approximated by
breaking up the ray into smaller segments [ti−1, ti) within

which σ and c are assumed to be roughly constant:

C(r, θ) ≈
∑
i

Ti(1− exp(−σθ(r(ti))δi))cθ(r(ti)) (3)

Ti = exp
(
−∑j<i σθ(r(tj))δj

)
, δi = ti − ti−1 . (4)

For a given setting of MLP parameters θ and pose p, we de-
termine the appropriate ray for each pixel, compute rendered
colors C(r, θ) and transmittances, and gather the results to
form the rendered image, I(θ,p) and transmittance T (θ,p).

In order for the MLP to learn high frequency details more
quickly [55], the input x is preprocessed by a sinusoidal
positional encoding γ before being passed into the network:

γ(x) =
[
cos(2lx), sin(2lx)

]L−1

l=0
, (5)

where L is referred to as the number of “levels” of positional
encoding. In our implementation, we specifically apply the
integrated positional encoding (IPE) proposed in mip-NeRF
to combat aliasing artifacts [3] combined with a random
Fourier positional encoding basis [55] with frequency com-
ponents sampled according to

ω = 2ud, where u ∼ U [0, L], d ∼ U(S2) . (6)

3.2. Image-text models

Large-scale datasets of images paired with associated text
have enabled training large-scale models that can accurately
score whether an image and an associated caption are likely
to correspond [12,26,46]. These models consist of an image
encoder g, and text encoder h, that map images and text
into a shared embedding space. Given a sentence y and an
image I, these image-text models produce a scalar score:
g(I)Th(y) that is high when the text is a good description
of the image, and low when the the image and text are mis-
matched. Note that the embeddings g(I) and h(y) are often
normalized, i.e. ‖g(I)‖ = ‖h(y)‖ = 1. Training is typi-
cally performed with a symmetric version of the InfoNCE
loss [40,45] that aims to maximize a variational lower bound
on the mutual information between images and text. Prior
work has shown that once trained, the image and text en-
coders are useful for a number of downstream tasks [46, 60].
In [48], the image and text encoders are used to score the
correspondence of outputs of a generative image model to a
target caption [48]. We build on this work by optimizing a
volume to produce a high-scoring image, not just reranking.

4. Method
In this section, we develop Dream Fields: a zero-shot ob-

ject synthesis method given only a natural language caption.

4.1. Object representation

Building on the NeRF scene representation (Section 3.1),
a Dream Field optimizes an MLP with parameters θ that pro-
duces outputs σθ(x) and cθ(x) representing the differential

https://twitter.com/rivershavewings
https://twitter.com/quasimondo


volume density and color of a scene at every 3D point x.
This field expresses object geometry via the density network.
Our object representation is only dependent on 3D coordi-
nates and not the camera’s viewing direction, as we did not
find it beneficial. Given a camera pose p, we can render an
image I(θ,p) and compute the transmittance T (θ,p) using
N segments via (4). Segments are spaced at roughly equal
intervals with random jittering along the ray. The number
of segments, N , determines the fidelity of the rendering. In
practice, we fix it to 192 during optimization.

4.2. Objective

How can we train a Dream Field to represent a given cap-
tion? If we assume that an object can be described similarly
when observed from any perspective, we can randomly sam-
ple poses and try to enforce that the rendered image matches
the caption at all poses. We can implement this idea by using
a CLIP network to measure the match between a caption and
image given parameters θ and pose p:

LCLIP(θ, pose p, caption y) = −g(I(θ,p))Th(y) (7)

where g(·) and h(·) are aligned representations of image and
text semantics, and I(θ,p) is a rendered image of the scene
from camera pose p. Each iteration of training, we sample
a pose p from a prior distribution, render I, and minimize
LCLIP with respect to the parameters of the Dream Field
MLP, θ. Equation (7) measures the similarity of an image
and the provided caption in feature space.

We primarily use image and text encoders from CLIP [46],
which has a Vision Transformer image encoder g(·) [15]
and masked transformer text encoder h(·) [56] trained con-
trastively on a large dataset of 400M captioned 2242 images.
We also use a baseline Locked Image-Text Tuning (LiT)
ViT B/32 model from [60] trained via the same procedure
as CLIP on a larger dataset of billions of higher-resolution
(2882) captioned images. The LiT training set was collected
following a simplified version of the ALIGN web alt-text
dataset collection process [26] and includes noisy captions.

Figure 1 shows a high-level overview of our method.
DietNeRF [24] proposed a related semantic consistency reg-
ularizer for NeRF based on the idea that “a bulldozer is a
bulldozer from any perspective”. The method computed the
similarity of a rendered and a real image. In contrast, (7)
compares rendered images and a caption, allowing it to be
used in zero-shot settings when there are no object photos.

4.3. Challenges with CLIP guidance

Due to their flexibility, Neural Radiance Fields are capa-
ble of high-fidelity novel view synthesis on a tremendous
diversity of real-world scenes when supervised with multi-
view consistent images. Their reconstruction loss will typ-
ically learn to remove artifacts like spurious density when
sufficiently many input images are available. However, we

4K iterations 8K iterations 24K iterations 100K (final)

Figure 4. To encourage coherent foreground objects, Dream Fields
train with 3 types of background augmentations: blurred Gaussian
noise, textures and checkerboards. At test time, we render with a
white background. Prompt: “A sculpture of a rooster.”

find that the NeRF scene representation is too unconstrained
when trained solely with LCLIP (7) alone from a discrete set
of viewpoints, resulting in severe artifacts that satisfy LCLIP

but are not visually compatible according to humans (see
Figure 3b). NeRF learns high-frequency and near-field [62]
artifacts like partially-transparent “floating“ regions of den-
sity. It also fills the entire camera viewport rather than gen-
erating individual objects. Geometry is unrealistic, though
textures reflect the caption, reminiscent of the artifacts in
Deep Dream feature visualizations [34, 39].

4.4. Pose sampling

Image data augmentations such as random crops are com-
monly used to improve and regularize image generation in
DeepDream [34] and related work. Image augmentations can
only use in-plane 2D transformations. Dream Fields support
3D data augmentations by sampling different camera pose
extrinsics at each training iteration. We uniformly sample
camera azimuth in 360◦ around the scene, so each training
iteration sees a different orientation of the object. As the
underlying scene representation is shared, this improves the
realism of object geometry. For example, sampling azimuth
in a narrow interval tended to create flat, billboard geometry.

The camera elevation, focal length and distance from
the subject can also be augmented, but we did not find this
necessary. Instead, we use a fixed camera focal length during
optimization that is scaled by mfocal = 1.2 to enlarge the
object 20%. Rendering cost is constant in the focal length.

4.5. Encouraging coherent objects through sparsity

To remove near-field artifacts and spurious density, we
regularize the opacity of Dream Field renderings. Our best
results maximize the average transmittance of rays passing
through the volume up to a target constant. Transmittance
is the probability that light along ray r is not absorbed by
participating media when passing between point t along the
ray and the near plane at tn (2). We approximate the total
transmittance along the ray as the joint probability of light
passing through N discrete segments of the ray according to



Eq. (4). Then, we define the following transmittance loss:

LT = −min(τ,mean(T (θ,p))) (8)
Ltotal = LCLIP + λLT (9)

This encourages a Dream Field to increase average trans-
mittance up to a target transparency τ . We use τ = 88% in
experiments. τ is annealed in from τ = 40% over 500 itera-
tions to smoothly introduce transparency, which improves
scene geometry and is essential to prevent completely trans-
parent scenes. Scaling 1− τ ∝ f2/d2 preserves object cross
sectional area for different focal and object distances.

When the rendering is alpha-composited with a simple
white or black background during training, we find that the
average transmittance approaches τ , but the scene is diffuse
as the optimization populates the background. Augmenting
the scene with random background images leads to coherent
objects. Dream Fields use Gaussian noise, checkerboard
patterns and the random Fourier textures from [35] as back-
grounds. These are smoothed with a Gaussian blur with
randomly sampled standard deviation. Background augmen-
tations and a rendering during training are shown in Figure 4.

We qualitatively compare (9) to baseline sparsity regular-
izers in Figure 5. Our loss is inspired by the multiplicative
opacity gating used by [35]. However, the gated loss has
optimization challenges in practice due in part to its non-
convexity. The simplified additive loss is more stable, and
both are significantly sharper than prior approaches for spar-
sifying Neural Radiance Fields.

4.6. Localizing objects and bounding scene

When Neural Radiance Fields are trained to reconstruct
images, scene contents will align with observations in a con-
sistent fashion, such as the center of the scene in NeRF’s
Realistic Synthetic dataset [33]. Dream Fields can place den-
sity away from the center of the scene while still satisfying
the CLIP loss as natural images in CLIP’s training data will
not always be centered. During training, we maintain an
estimate of the 3D object’s origin and shift rays accordingly.
The origin is tracked via an exponential moving average of
the center of mass of rendered density. To prevent objects
from drifting too far, we bound the scene inside a cube by
masking the density σθ.

4.7. Neural scene representation architecture

The NeRF network architecture proposed in [33] parame-
terizes scene density with a simple 8-layer MLP of constant
width, and radiance with an additional two layers. We use
a residual MLP architecture instead that introduces residual
connections around every two dense layers. Within a residual
block, we find it beneficial to introduce Layer Normaliza-
tion at the beginning and increase the feature dimension in a
bottleneck fashion. Layer Normalization improves optimiza-
tion on challenging prompts. To mitigate vanishing gradient
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Figure 5. Our transmittance losses and background augmentations
are complementary. Top: Without background augmentations,
priors on transmittance (right three columns) do not remove low-
density structures. NeRF’s density perturbations improve coher-
ence, but cloudy artifacts remain. Bottom: When the object is
alpha composited with random backgrounds during training, CLIP
fills the scene with opaque material to conceal the background.
However, gated and our simplified additive transmittance regular-
izers both limit the opacity of the volume successfully and lead to
a sharper object. Inset panels depict transmittance. Prompt: “an
illustration of a pumpkin on the vine.”

issues in highly transparent scenes, we replace ReLU acti-
vations with Swish [47] and rectify the predicted density σθ
with a softplus function. Our MLP architecture uses 280K
parameters per scene, while NeRF uses 494K parameters.

5. Evaluation
We evaluate the consistency of generated objects with

their captions and the importance of scene representation,
then show qualitative results and test whether Dream Fields
can generalize compositionally. Ablations analyze regu-
larizers, CLIP and camera poses. Finally, supplementary
materials have further examples and videos.

5.1. Experimental setup

3D reconstruction methods are evaluated by comparing
the learned geometry with a ground-truth reference model,
e.g. with Chamfer Distance. Novel view synthesis tech-
niques like LLFF [32] and NeRF do not have ground truth
models, but compare renderings to pixel-aligned ground
truth images from held-out poses with PSNR or LPIPS, a
deep perceptual metric [63].

As we do not have access to diverse captioned 3D models
or captioned multi-view data, Dream Fields are challenging
to evaluate with geometric and image reference-based met-
rics. Instead, we use the CLIP R-Precision metric [41] from
the text-to-image generation literature to measure how well
rendered images align with the true caption. In the context of
text-to-image synthesis, R-Precision measures the fraction of
generated images that a retrieval model associates with the
caption used to generate it. We use a different CLIP model
for learning the Dream Field and computing the evaluation
metric. As with NeRF evaluation, the image is rendered from



a held-out pose. Dream Fields are optimized with cameras
at a 30◦ angle of elevation and evaluated at 45◦ elevation.
For quantitative metrics, we render at resolution 1682 during
training as in [24]. For figures, we train with a 50% higher
resolution of 2522.

We collect an object-centric caption dataset with 153
captions as a subset of the Common Objects in Context
(COCO) dataset [28] (see supplement for details). Object
centric examples are those that have a single bounding box
annotation and are filtered to exclude those captioned with
certain phrases like “extreme close up”. COCO includes
5 captions per image, but only one is used for generation.
Hyperparameters were manually tuned for perceptual quality
on a set of 20-74 distinct captions from the evaluation set,
and are shared across all other scenes. Additional dataset
details and hyperparameters are included in the supplement.

5.2. Analyzing retrieval metrics

In the absence of 3D training data, Dream Fields use
geometric priors to constrain generation. To evaluate each
proposed technique, we start from a simplified baseline Neu-
ral Radiance Field largely following [33] and introduce the
priors one-by-one. We generate two objects per COCO
caption using different seeds, for a total of 306 objects. Ob-
jects are synthesized with 10K iterations of CLIP ViT B/16
guided optimization of 168×168 rendered images, bilin-
early upsampled to the contrastive model’s input resolution
for computational efficiency. R-Precision is computed with
CLIP ViT B/32 [46] and LiTuu B/32 [60] to measure the
alignment of generations with the source caption.

Table 1 reports results. The most significant improve-
ments come from sparsity, scene bounds and architec-
ture. As an oracle, the ground truth images associated with
object-centric COCO captions have high R-Precision. The
NeRF representation converges poorly and introduces alias-
ing and banding artifacts, in part from its use of axis-aligned
positional encodings.

We instead combine mip-NeRF’s integrated positional
encodings with random Fourier features, which improves
qualitative results and removes a bias toward axis-aligned
structures. However, the effect on precision is neutral or
negative. The transmittance loss LT in combination with
background augmentations significantly improves retrieval
precision +18% and +15.6%, while the transmittance loss
is not sufficient on its own. This is qualitatively shown
in Figure 5. Our MLP architecture with residual connec-
tions, normalization, bottleneck-style feature dimensions
and smooth nonlinearities further improves the R-Precision
+8% and +2%. Bounding the scene to a cube improves
retrieval +13% and +11%. The additional bounds explicitly
mask density σ and concentrate samples along each ray.

We also scale up Dream Fields by optimizing with an
image-text model trained on a larger captioned dataset of

Method R-Precision ↑
CLIP B/32 LiTuu B/32

Baseline COCO GT images 77.1±3.4 75.2±3.5
Simplified NeRF 31.4±2.7 10.8±1.8

Positional
encoding

+ mip-NeRF IPE 29.7±2.6 12.4±1.9
+ Higher freq.

Fourier features
24.2±2.5 10.5±1.8

Sparsity,
augment

+ random crops 25.8±2.5 10.5±1.8
+ transmittance loss 23.7±2.4 7.6±1.5
+ background aug. 44.1±2.8 26.1±2.5

Scene
param.

+ MLP architecture 52.0±2.9 27.8±2.6
+ scene bounds 65.4±2.7 38.9±2.8
+ track origin 59.8±2.8 34.6±2.7

Scaling
+ LiTuu ViT B/32 59.5±2.8 –
+ 20K iterations,

2522 renders
68.3±2.7 –

Table 1. When used together, geometric priors improve caption
retrieval precision. We start with a simplified version of the NeRF
scene representation and add in one prior at a time until all are used
in conjunction. Captions are retrieved from rendered images of the
generated objects at held-out camera poses using CLIP’s ViT B/32.
Objects are generated with LCLIP guidance from the pre-trained
CLIP ViT B/16 except in scaling experiments where we experiment
with the higher-resolution LiTuu B/32 model.

3.6B images from [60]. We use a ViT B/32 model with image
and text encoders trained from scratch. This corresponds to
the uu configuration from [60], following the CLIP training
procedure to learn both encoders contrastively. The LiTuu
ViT encoder used in our experiments takes higher resolution
2882 images while CLIP is trained with 2242 inputs. Still,
LiTuu B/32 is more compute-efficient than CLIP B/16 due
to the larger patch size in the first layer.

LiTuu does not significantly help R-Precision when opti-
mizing Dream Fields with low resolution renderings, perhaps
because the CLIP B/32 model used for evaluation is trained
on the same dataset as the CLIP B/16 model in earlier rows.
Optimizing for longer with higher resolution 2522 renderings
closes the gap. LiTuu improves visual quality and sharpness
(Appendix A), suggesting that improvements in multimodal
image-text models transfer to 3D generation.

5.3. Compositional generation

In Figure 6, we show non-cherrypicked generations that
test the compositional generalization of Dream Fields to
fine-grained variations in captions taken from the website
of [48]. We independently vary the object generated and
stylistic descriptors like shape and materials. DALL-E [48]
also had a remarkable ability to combine concepts in prompts
out of distribution, but was limited to 2D image synthesis.
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Figure 6. Compositional object generation. Dream Fields allow users to express specific artistic styles via detailed captions. Top two rows:
Similar to text-to-image experiments in [48], we generate objects with the caption “armchair in the shape of an avocado. armchair imitating
avocado.” Bottom: Generations vary the texture of a single snail. Captions follow the template “a snail made of baguette. a snail with the
texture of baguette” Results are not cherry-picked.

Method Loss or parameterization R-Prec.

No regularizer LCLIP (7) 35.3
Perturb σ [33] σ = softplus(fθ(x) + ε) 47.7
Beta prior [30] (10) 50.3
Gated T [35] −mean(T (θ,p)) · LCLIP 34.6
Clipped gated T −LT · LCLIP (11) 62.1
Clipped additive T LCLIP + λLT (9) 62.1

Table 2. Ablating sparsity regularizers. Optimization is done for
10K iterations at 1682 resolution with LiTuu ViT B/32 and back-
ground augmentation, and retrieval uses CLIP ViT B/32. For the
purposes of ablation, we run one seed per caption (153 runs).

Dream Fields produces compositions of concepts in 3D, and
supports fine-grained variations in prompts across several
categories of objects. Some geometric details are not realis-
tic, however. For example, generated snails have eye stalks
attached to their shell rather than body, and the generated
green vase is blurry.

5.4. Model ablations

Ablating sparsity regularizers While we regularize the
mean transmittance, other sparsity losses are possible. We
compare unregularized Dream Fields, perturbations to the
density σ [33], regularization with a beta prior on trans-
mittance [30], multiplicative gating versions of LT and our
additive LT regularizer in Figure 5. On real-world scenes,
NeRF added Gaussian noise to network predictions of the
density prior to rectification as a regularizer. This can en-
courage sharper boundary definitions as small densities will
often be zeroed by the perturbation. The beta prior from

= 0.95 = 0.9 = 0.75 = 0.5 = 0.25

Figure 7. The target transmittance τ affects the size of generated
objects. Inset panels depict transmittance. Prompt from Object
Centric COCO: “A cake toped [sic] with white frosting flowers
with chocolate centers.”

Neural Volumes [30] encourages rays to either pass through
the volume or be completely occluded:

Lbeta
total = LCLIP+λ·mean(log T (θ,p) + log(1− T (θ,p)))

(10)
The multiplicative loss is inspired by the opacity scaling
of [35] for feature visualization. We scale the CLIP loss by
a clipped mean transmittance:

Ltotal = min(τ, mean(T (θ,p))) · LCLIP (11)

Table 2 compares the regularizers, showing that density per-
turbations and the beta prior improve R-Precision +12.4%
and +15%, respectively. Scenes with clipped mean transmit-
tance regularization best align with their captions, +26.8%
over the baseline. The beta prior can fill scenes with opaque
material even without background augmentations as it en-
courages both high and low transmittance. Multiplicative
gating works well when clipped to a target and with back-
ground augmentations, but is also non-convex and sensitive
to hyperparameters. Figure 7 shows the effect of varying the
target transmittance τ with an additive loss.



Retrieval model R-Precision
Optimized model CLIP B/32 CLIP B/16 LiTuu B/32

COCO GT 77.1±3.4 79.1±3.3 75.2±3.5

CLIP B/32 [46] (86.6±2.0) 74.2±2.5 42.8±2.8
CLIP B/16 [46] 59.8±2.8 (93.5±1.4) 35.6±2.7
LiTuu B/32 59.5±2.8 66.7±2.7 (88.9±1.8)

Table 3. The aligned image-text representation used to optimize
Dream Fields influences their quantitative validation R-Precision
according to a held-out retrieval model. All contrastive models
produce high retrieval precision, though qualitatively CLIP B/32
produced overly smooth and simplified objects. We optimize for
10K iterations at 1682 resolution. (Italicized) metrics use the opti-
mized model at a held-out pose and indicate Dream Fields overfit.

Varying the image-text model We compare different im-
age and text representations h(·), g(·) used in LCLIP (7) and
for retrieval metrics. Table 3 shows the results. CLIP B/32,
B/16 and LiTuu B/32 all have high retrieval precision, in-
dicating they can synthesize objects generally aligned with
the provided captions. CLIP B/32 performs the best, outper-
forming the more compute intensive CLIP B/16 model. The
architectures differ in the number of pixels encoded in each
token supplied to the Transformer backbone, i.e. the ViT
patch size. A larger patch size may be sufficient due to the
low resolution of renders: 1682 cropped to 1542, then up-
sampled to CLIP’s input size of 2242. Qualitatively, training
with LiTuu B/32 produced the most detailed geometry and
textures, suggesting that open-set evaluation is challenging.

Varying optimized camera poses Each training itera-
tion, Dream Fields samples a camera pose p to render the
scene. In experiments, we used a full 360◦ sampling range
for the camera’s azimuth, and fixed the elevation. Figure 8
shows multiple views of a bird when optimizing with smaller
azimuth ranges. In the left-most column, a view from the cen-
tral azimuth (frontal) is shown, and is realistic for all training
configurations. Views from more extreme angles (right, left,
rear view columns) have artifacts when the Dream Field
is optimized with narrow azimuth ranges. Training with
diverse cameras is important for viewpoint generalization.

6. Discussion and limitations
There are a number of limitations in Dream Fields. Gener-

ation requires iterative optimization, which can be expensive.
2K-20K iterations are sufficient for most objects, but more
detail emerges when optimizing longer. Meta-learning [54]
or amortization [42] could speed up synthesis.

We use the same prompt at all perspectives. This can
lead to repeated patterns on multiple sides of an object. The
target caption could be varied across different camera poses.
Many of the prompts we tested involve multiple subjects,

Frontal view Right view Left viewRear view

Figure 8. Training with diversely sampled camera poses improves
generalization across views. In the top row, we sample camera
azimuth from a single viewpoint. The rendered view from the same
perspective (left column) is realistic, but the object structure is poor
as seen from other angles. Qualitative results improve with larger
sampling intervals, with the best results from 360◦ sampling.

but we do not target complex scene generation [6, 8, 11, 13]
partly because CLIP poorly encodes spatial relations [29,53].
Scene layout could be handled in a post-processing step.

The image-text models we use to score renderings are not
perfect even on ground truth training images, so improve-
ments in image-text models may transfer to 3D generation.
Our reliance on pre-trained models inherits their harmful
biases. Identifying methods that can detect and remove these
biases is an important direction if these methods are to be
useful for larger-scale asset generation.

7. Conclusion
Our work has begun to tackle the difficult problem of

object generation from text. By combining scalable multi-
modal image-text models and multi-view consistent differen-
tiable neural rendering with simple object priors, we are able
to synthesize both geometry and color of 3D objects across
a large variety of real-world text prompts. The language
interface allows users to control the style and shape of the
results, including materials and categories of objects, with
easy-to-author prompts. We hope these methods will enable
rapid asset creation for artists and multimedia applications.
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Zero-Shot Text-Guided Object Generation with Dream Fields
Supplementary Material

A. Qualitative results and ablations

a bouguet of wilted
red roses on a

table.

CLIP B/32 CLIP B/16 LiT B/32

a cluster of pine
trees are in a
barren area.

a blue jug in
a garden filled with

mud.

Figure 9. Varying the image-text model used for Dream Field optimization.

An explanatory video with more qual-
itative results, code, an interactive Co-
lab notebook, and object-centric prompts
are available at https://ajayj.com/
dreamfields. The video includes 360◦ ren-
derings where the camera orbits the object,
as well as associated depth maps.

Changing the image-text model Figure 9
qualitatively compares generations using
guidance from three different contrastive
image-text models. Dream Fields generated
with LiTuu B/32 are generally sharper than
those with CLIP models, but all three can
produce objects reflecting some aspects of
the prompts.

a zebra is eating grass on the ground.a bus covered with assorted 
colorful graffiti on the side of it.

a plate of oranges sliced
on top of a table.

fruit growing on the side
of a tree in a jungle.

Figure 10. Object diversity: Objects vary with different seeds, effect-
ing NeRF’s weight initialization, camera sampling and augmentations.

Diversity of synthesized objects In creative applica-
tions, users often want to select between multiple syn-
thesized results. Dream Fields can synthesize multiple
objects from the same prompt by changing the random
seed before optimization. The seed changes the initializa-
tion of the NeRF weights, the camera pose sampled each
iteration and the random background and crop augmenta-
tions. Figure 10 shows the effect of changing the seed for
four object-centric COCO prompts. Changing the seed
changes scene shape and layout. For example, the bus on
the left is compressed into a cubical shape, while the bus
on the right is elongated. Colors and textures are often
similar across the seeds, though can also vary. Changing
the seed is another dimension of control in addition to
prompt engineering.

B. Object Centric COCO captions dataset
Our Object Centric COCO dataset includes 153 test set prompts and 74 development set prompts. Several additional

prompts are used for qualitative results, and are included in the main paper alongside figures. Captions are included along with
code on the project website.

C. Hyperparameters and training setup
Positional encoding Our Fourier feature positional encodings use L = 8 frequency levels, while novel view synthesis
applications with image supervision commonly use L = 10 to fit high-frequency details in photographs. Low-frequency
ablations in Table 1 use L = 6, which can improve convergence in the absence of our other geometric priors.

Rendering Scenes are bounded to a cube with side length 2. The camera is sampled at a fixed radius of 4 units from the
center of the cubical scene bounds and an elevation of 30◦ above the equator. Near and far planes are set at 4±

√
3 units from

the camera based on the minimum and maximum possible distance to the corners of the cube. During training, we sample
192 points along each ray, spaced uniformly and jittered with uniform noise. Rendered 1682 views are cropped to 1542 and

https://ajayj.com/dreamfields
https://ajayj.com/dreamfields
https://ajayj.com/dreamfields


upsampled to CLIP’s input resolution for scenes where we compute qualitative metrics or 2522 views are cropped to 2242 for
certain higher-quality visualizations. Crop sizes are selected to cover about 80% of the image area. At test time, we sample
512 points along the rays and render at a higher resolution equal to CLIP’s input size of 2242 or LiT’s input size of 2882 for
computing R-Precision and 4002 for visualizations.
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Figure 11. Total loss with different spar-
sity regularizers and constant LCLIP ∈
[0.1,−0.3]. Upper and lower bounds of
LCLIP are shown with dashed lines. The
additive loss is convex, and is always min-
imized by increasing transmittance.

Optimization MLP parameters are initialized with the Flax [22] defaults: LeCun
normal weights and zero bias for linear layers, and unit scaling and zero bias for
layer normalization. The MLP is optimized with Adam with ε = 10−5. Learning
rate warms up exponentially from 10−5 to 10−4 over 1500 iterations, then is held
constant. The camera origin is separately tracked with an exponential moving
average with decay rate 0.999 of the center of mass of rendered density. Figure 11
visualizes different forms of the transmittance loss.

Hyperparameter selection Hyperparameters are manually tuned for visual qual-
ity on a development set of 74 object-centric COCO captions distinct from the test
set reported in the paper. Most tuning is done on a smaller subset of 20 of the 74
captions, and hyperparameters are shared across all scenes.

Hardware Optimization is done on 8 preemptible TPU cores, and 10K iterations
takes approximately 1 hour 12 minutes. This means each Dream Field costs approx-
imately $3-4 to generate on Google Cloud, which is economical for applications.
Training is bottlenecked by MLP inference and backpropagation during volumetric
rendering, not CLIP.

D. Pixel and voxel baselines

1283 RGBα voxels
8M parameters

+ transmittance loss

a small green vase displays some small yellow blooms.

NeRF (ours)
0.5M parameters

+ transmittance loss

Pixel optimization
+ transmittance loss,

+ TV loss

Figure 12. Optimizing a Neural Radiance Field scene represen-
tation (bottom) leads to fewer artifacts than optimizing an explicit
single-view 2D image (top) or 3D voxel grid (middle), even when
the explicit representations are regularized. Our MLP has 16× fewer
parameters than the voxel grid, which may contribute to smoother, less
noisy objects. We use CLIP B/16 for this experiment.

We implemented 2D image optimization with a total
variation loss and generative prior (CLIP Guided Diffu-
sion), as well as a 3D voxel baselines to replace NeRF in
Fig. 12. All results for this ablation optimize CLIP ViT
B/16.

The 2D image is an RGBα pixel grid, composited
with random backgrounds during optimization similar to
Dream Fields. Optimizing a single 2D RGBα image does
not produce a multi-view consistent 3D object, so other
viewpoints cannot be rendered. Even with transmittance
and TV regularization, the resulting image is noisy.

The voxel grid stores 1283 RGB and alpha values, in-
terpolated trilinearly at ray sample points and composited
without a neural network using the PyTorch3D library. De-
spite the transmittance loss, data augmentations and scene
bounds, the voxel grid also has significant low-density
artifacts. The voxel baseline has CLIP B/32 R-Precision
37.0%±3.9, while NeRF has 59.8%±2.8 (Tables 1, 3) with
16× fewer parameters, showing that the neural represen-
tation improves consistency with the input caption in a
generalizable way. Using a hybrid representation with
an explicit voxel grid followed by a smaller MLP head
might improve computational efficiency of Dream Fields
without degrading quality.
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Figure 13. Long-run training and validation curves averaged over 79 hand-written prompts. Transmittance remains close to the target τ
throughout training. Dream Fields overfit to the image-text representations used for optimization, so in quantitative experiments, we stop
training at 10K iterations. The standard error of the mean is shaded.

E. Signed distance field parameterization
In early experiments, we learned scene density σ with the VolSDF parameterization [59] σ(x) = αΦβ(−dΩ(x)) where

dΩ(x) is a signed distance function implicitly defining the object surface and Φ is the CDF of the Laplace distribution. This
allows normal vector prediction with autodifferentiation and could improve the quality of the surface extracted from the
radiance field. Dream Fields successfully train with this alternate parameterization and produce visually compelling objects.
The SDF Eikonal loss introduces an additional loss weight hyperparameter, which benefits from some tuning. Alternate 3D
representations are an interesting avenue for future work.

F. Impact of optimization time
Dream Fields can overfit to the aligned image-text representation used for optimization. Figure 13 shows the training

losses, LCLIP and mean transmittance mean(T (θ,p)), as well as the validation R-Precision. Objects are generated with LiTuu
ViT B/32 guidance, and R-Precision is computed with a different contrastive image-text model, CLIP ViT B/32. Validation
renderings are also done at a held-out elevation angle. Training loss continues to improve over long optimization trajectories,
up to 10× longer than reported in the main paper. However, validation retrieval accuracy declines after 5-10K iterations.
The metrics are averaged over 79 different hand-written captions that test fine-grained variations in wording and prompt
engineering.

Qualitatively, additional details and hyper-realistic effects are added over the course of long runs, shown in our supplementary
video. Some details are not realistic, like floating text related to the typographic attacks identified in [18].

More augmentations may help further regularize the optimization. These include more aggressive 2D image augmentations
such as smaller random crops, and more 3D data augmentations including varying focal length, varying distance from the
subject and varying elevation. 3D data augmentations are supported by our approach.
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