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1. Implementation Details
1.1. DynOPool Networks

For a fair comparison, we use the same model architecture and augmentation strategies as Shape Adaptor [3]. Following

the prior work, only a single fully-connected layer is used at the end of CNNs for both the human-designed and DynOPool-

equipped models to concentrate on the effect of feature shapes.

For classification, we replace the resizing modules (the pooling and strided convolution layers) as described below.

Poolings → DynOPools, (1)

ReLU ◦ Convs → DynOPools ◦ ReLU ◦ Conv1. (2)

Here, a subscription s represents the stride for each operation. In ResNet-50 [1] for ImageNet [5], the pooling layer comes

right after the strided convolution layer in the first two blocks. In such a case, DynOPool is applied twice in a row (refer to

(2)) and we use one DynOPool having 0.25 as the initial scaling factor to prevent the training instability. Moreover, if there

are more than two branches with the same resolution as in ResNet, the same scale parameter α is shared across the branches

to ensure consistency.

For semantic segmentation, we plug-in DynOPool into HRNet-W48 [7] as follows:

Convs → Conv1 ◦ DynOPools. (3)

In HRNet-W48, each convolution stream contains the strided convolution layers for downsampling and the bilinear interpo-

lation layers for upsampling. We replace the strided convolution layers with DynOPool + vanilla convolution (of stride 1)

and maintain the bilinear interpolation layers. Since the resolution of the feature maps should be the same for each level of

the convolution stream in HRNet-W48, we share the same DynOPool module instance within each convolution stream.

1.2. Experimental Setup

We list all ingredients and hyperparameters for our models in Table 1 and 2. Initially, we set the scale factor r of DynOPool

to 0.5, which is the same as the human-designed model. The model size is adjusted through λ, however, in cases of ResNet-50

on CIFAR-100 and Aircraft, we observe that model size does not increase that much even when λ = 0. The problem is that

accuracies for such models are not that impressive due to the insufficient model size. In such cases, we increase the initial

scale factor of the first DynOPool layer to obtain models with good performance. We list up λs and initial scale factors of the

first resizing layer for all settings in Table 2.

For the experiments in Section 3 of the main paper (CIFAR-stretch/tile/large), we use the same hyperparameters as VGG-

16 [6] on CIFAR-100 [2]. λs are set to 2.33e-4/7.21e-5/5.03e-5, respectively. For EfficientNet-B0 with DynOPool, we use

the same hyperparameters as VGG-16 on ImageNet. Also, λ is set to 2.50e-5.

The semantic segmentation model is trained for 100 epochs with the batch size of 16 on a single GPU. The initial learning

rate is set to 1.6e-2 for the weights and 8e-3 for the α with the weight decay of 1e-4. Also, λ is set to 7.00e-5. As an optimizer,

we use SGD with momentum 0.9 and polynomial learning rate policy with the power of 0.9.

We implement all experiments with PyTorch [4], and use the Automatic Mixed Precision package for the ImageNet

experiments.



Table 1. Hyperparameter list for the experiments.

FGVC-Aircraft CIFAR-100 ImageNet

VGG-16 ResNet-50 MBN-V2 VGG-16 ResNet-50 MBN-V2 VGG-16 ResNet-50 MBN-V2

Learning Rate 1e-2 1e-1 1e-1 1e-1 5e-2

Learning Rate (α) 1e-2 1e-2 5e-3

Optimizer SGD with 0.9 momentum

Scheduler Cosine Annealing

Weight Decay 5e-4 5e-4 4e-5 5e-4 5e-4 4e-5 5e-4 5e-4 4e-5

Batch Size 8 128 64 (per GPU) for 4 GPUs

Epochs 250 250 120

Table 2. Coefficient for GMACs and learning rate for shape parameter α for each model.

FGVC-Aircraft CIFAR-100 ImageNet

VGG-16 ResNet-50 MBN-V2 VGG-16 ResNet-50 MBN-V2 VGG-16 ResNet-50 MBN-V2

DynOPool-S

λ 3.07e-5 3.99e-5 3.00e-5 2.20e-4 0 5.00e-5 1.00e-4 8.00e-5 4.00e-5

Init. Scale

(first layer)
0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5

DynOPool-B

λ 6.51e-6 0 0 1.59e-5 0 1.00e-7 7.00e-5 2.00e-5 1.00e-5

Init. Scale

(first layer)
0.5 0.7 0.5 0.5 0.8 0.5 0.5 0.5 0.5



2. Comparison with Shape Adaptor

(a) DynOPool (ours)

(b) Shape Adaptor

Figure 1. Visualization of feature aggregation ranges (a) DynOPool (ours) and (b) Shape Adaptor. The brown grid represents the grid of

output features overlaid on the input feature. The numbers written in each bin of the input feature indicate the contribution of each feature

to compose a shaded output bin. Since Shape adaptor finds the optimal pooling ratio by linear interpolation between two branches with

different pre-defined pooling ratios, its aggregation range is highly quantized and unrelated features are involved.

In Figure 1, we visualize the feature aggregation range for both Shape Adaptor [3] and ours. Shape Adaptor uses linear

interpolation between the features with the pre-defined rescaling ratios to find the optimal pooling ratio. However, since the

resulted ratio lays between two pre-defined ratios, its receptive field gets much bigger than it actually needs.

Furthermore, Shape Adaptor uses pooling before the aggregation, the overall performance is closely affected by the pre-

defined pooling ratio. Therefore, setting a small pooling ratio smaller than 0.5, to broaden the search space of the pooling

ratio, can potentially harm the overall performance. Since we use less quantization for feature selection, each bin of the output

feature can aggregate more closely related features from the input.

3. Resource Efficiency

Table 3. The relative computational cost of DynOPool compared to the entire model. DynOPool brings negligible computational overheads

compared to other operators in the networks.

Dataset FGVC-Aircraft CIFAR-100 ImageNet

VGG-16 0.07 % 0.07 % 0.07 %

ResNet-50 0.26 % 0.13 % 0.26 %

MobileNetV2 3.88 % 1.00 % 3.86 %

In Table 3, we calculate the percentage of DynOPool’s GMACs compared to the overall GMACS of the entire models.

The amount of computational cost brought by DynOPool is only a fraction of the total cost. For VGG-16 and ResNet-50,

our modules’ costs are less than 1% of the entire models’ costs. Even in MobileNetV2, where the convolution operation is

relatively very light, the percentages do not exceed 10%.

The reason for the relatively small computational costs of our modules can be two-fold. First, the convolutional operation is

much more expensive than the operation of bilinear interpolation. The amount of computation for convolution is proportional

to Cin ·Cout ·Hout ·Wout, while the cost of bilinear interpolation is proportional only to the size of the output, Cout ·Hout ·Wout,

where Cin and Cout are the number of channels of the input and output, respectively. Second, the number of pooling layers

is much smaller than the number of convolution layers. For example, there are only four pooling layers in VGG-16. In

conclusion, our scaling module allows for improving performance by optimizing the receptive field with a few additional

parameters and computational cost.



4. Limitations and Social Negative Impacts
Since the model size is indirectly adjusted through λ, there is a limitation in finding a model of the exact target GMACs.

Also, we could only estimate the distribution of information in each dataset through the obtained feature shapes, however, it

would be great if future research could provide a way to numerically analyze this.

Lastly, since DynOPool was prone to increase the complexity of the model to maximize the accuracy, it could adversely

affect global warming due to additional GPU operations.
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